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Abstract— The efficient and reliable operation of material
flows in transportation networks is a subject of broad eco-
nomic interest. Important applications include the control of
signalized intersections in urban road systems and the planning
and scheduling of logistic processes. Traditional approaches to
operating material flow networks are however known to have
severe disadvantages: centralized controllers suffer from their
high computational demands that make an on-line control hardly
possible in larger networks, whereas a decentralized control using
clearing policies leads under rather general conditions to instabil-
ities. As an alternative approach that may help to overcome these
problems, a self-organization mechanism of conflicting flows is
proposed that is inspired by oscillatory phenomena of pedestrian
and animal flows at intersections or bottlenecks. For this purpose,
a permeability function is introduced that allows to sequentially
serve the different possible flow directions at an intersection in
a fully demand-dependent way.

The self-organized optimization achieved by the presented
approach is demonstrated to be closely linked to synchronization
of the oscillatory service dynamics at the different intersections in
the network. For regular grid topologies, different synchroniza-
tion regimes are present depending on the inertia of the switching
from one service state to the next one. The dependence of this
observation on the regularity of the considered network is tested.
The reported results contribute to an improved understanding
of the conditions that have to be present for efficiently operating
material flow networks by a decentralized control, which is
of major importance for future implementations in real-world
traffic or production systems.

I. INTRODUCTION

Many real-world complex systems have (among others)
the function of transportation of material and/or information
from one place to the other. Examples include systems in
technology (including vehicular traffic [1], [2], [3], production,
logistics, supply networks [4], or telecommunication) as well
as biology (for example, the nervous and cardio-vascular
system, intracellular transport using the cytoskeleton [5], [6],
and nutrient transport in amoeboid organisms [7] or fungal
mycelia [8]). One may distinguish continuous-flow systems
(for example, power grids, water supply networks, nutrient
or blood transport systems in organisms) from such systems
which are characterized by a large number of individual
and mutually interacting transportation processes (which is
the case for most information flow networks, road, railway,
pedestrian or animal traffic, production and logistics systems).

In the case of systems characterized by discrete flows,
the aim of an efficient organization is to minimize the time
required for all individual transportation processes. Typically,
this optimization is difficult and demanding, since the topology
of the underlying networks is composed of a potentially large
number of merges and intersections at which there are conflicts
between the flows on different routes. To avoid physical
collisions, these flows have to be controlled by devices like
traffic lights. The operation strategy of these devices is decisive
for the optimization of the system performance.

Whereas in the case of a low network load, the individ-
ual service of transportation units is beneficial, due to the
necessary safety headways between individual services, it
becomes inefficient if the traffic volume in a material flow
network exceeds a certain threshold. Hence, in the presence of
substantially high traffic volumes, a coordinated operation of
the conflicting flows leads to better results. Such a coordinated
operation is achieved by bundling material or vehicles into
platoons, which is performed in urban road networks by the
action of traffic lights, or in logistics by transporting heavy
loads on railways instead of roads.

In a coordinated service of conflicting material flows, the
switching between flows from and/or in different directions
leads to an accumulation of material (like vehicles or products)
on the links which are currently not served. The corresponding
effects are mathematically described in terms of queueing
theory. In switched queueing systems, every intersection of
conflicting material flows is characterized by the amount
of delayed material on all of the incoming links, which is
determined by the lengths N(t) of the associated queues.
The arrival and departure rates of material, A(t) and O(t),
are bounded by the maximum capacity Q̂ that is an intrinsic
property of the transportation route and the used devices.
Regarding the state of the different queues (which determine
the current service state of the intersection point), one may
distinguish different states of the queue: a “no service” state
and a service period, which itself is composed of a “setup”
state, a “clearing” state, and a possible “extension” state with
free-flow conditions on the served routes (see Fig. 1). In the
context of vehicular traffic control, a “setup” state of duration
τ is essential for a safe operation making sure that all vehicles



Fig. 1. Evolution of the departure flow (outflow) O(t) and the amount of
queued material (vehicles) N(t) for one incoming link with a constant inflow
rate A(t) ≡ Q0 < Q̂. The different states of the queue are schematically
shown.

have left the conflict area before the considered traffic stream
enters, whereas “clearing” and “extension” states combine to
the total green time g during a service period.

Each of the states mentioned above is associated with
different dynamical regimes of the queueing process, which
are characterized by the relationship between the arrival flow
and the change in the amount of queued material:

dN

dt
=


A(t), “no service” and “setup” states,
A(t)− Q̂, “clearing” state,
0, “extension” state.

(1)
In a similar way, one may write for the departure flow:

O(t) =


0, “no service” and “setup” states,
Q̂, “clearing” state,
A(t), “extension” state.

(2)

Present day, material flow networks are typically subjected
to a global control. Beside the high computational demands of
such a control in the case of larger networks, the systems be-
come very unflexible with respect to their reactions to random
fluctuations of the transportation volume and extraordinary
events like traffic accidents, machine failures, or attacks.
Despite these disadvantages, for example, typical traffic lights
are mainly operated by traffic-adaptive fixed-time controllers,
which means that the average service period is fixed and
can only be varied within small intervals [9]. The natural
alternative of a decentralized control is very appealing in
terms of computational demands and flexibility. However, the
traditional approach to such a control using clearing policies
has been shown to lead to severe instabilities in networks [10]:
even if a corresponding policy is stable and optimal for a
single intersection, it may not be used for controlling acyclic
networks which are commonly present in traffic, production,
and logistics. In this work, an alternative strategy is proposed
for a decentralized control of conflicting material flows in
networks, which is motivated by empirical observations of
self-organized oscillations of pedestrian motion at bottlenecks
[11]. Using the resulting concept of a oscillating permeability
function that is controlled by the net pressure difference

between the conflicting flows, the self-organized optimization
and synchronization of the flows in a simple network config-
uration is studied in some detail.

This paper is organized as follows: In Sec. II, the basic
ingredients of a model for an efficient decentralized control
and its generalization to arbitrary network configurations are
described. The resulting switching dynamics at an isolated
merge or intersection of two flows is considered in Sec. III. If it
is applied to regular grid networks, the proposed control leads
to a system-wide coordination with a phase coherent, mutually
lagged switching dynamics of the individual intersection,
which is studied in some detail in Sec. IV. Finally, the major
results of this study are summarized and completed by an
outlook on possible modifications of the presented approach
that appear to be necessary for a practical implementation in
real-world material flow networks.

II. DESCRIPTION OF THE MODEL

The model behind the decentralized control strategy used
in this work is motivated by empirical findings from the
field of pedestrian dynamics. Suppose there are two flows
of pedestrians in opposite directions which have to pass a
common bottleneck. Using simulations with the social force
model assuming interactions between individuals due to phys-
ical and “social” pressure terms, Helbing et al. [11], [12]
have been able to explain the empirical observation of an
oscillatory switching between different flow directions by a
varying net pressure difference. Corresponding findings have
also been experimentally reported for ant traffic [13]. In
addition, related effects have been found both empirically
and by means of simulations in terms of self-organized lane
formation in intersecting pedestrian flows [14] and pedestrian
counter-flows [15] as well as for intersecting and bottleneck
flows of pedestrian and vehicular traffic [16], [17], [18].

The above mentioned results suggest that the oscillatory
switching between traffic in different directions is induced
by the variations of the mutual (physical as well as social)
pressure of the waiting and moving pedestrians. Mathemati-
cally, this phenomenon can be formulated by a cost function
C(t) which controls the permeability of the bottleneck in both
directions. For the sake of simplicity, this function will be
firstly specified for the case of two merging or intersecting
flows. In the presented model, there are two main factors
entering the cost function [19]:

1) a net “pressure” force of the waiting material, which is
proportional to the difference between the amounts of
material still waiting to cross the intersection in both
possible directions;

2) a net “drain” force that corresponds to the natural inertia
of a flow that is currently served; it will be assumed
that this drain is proportional to the difference of the
departure flows in both directions.

As an additional factor, one may also penalize the total waiting
time T (t) of the delayed material waiting on the incoming
links. In the pedestrian analogy, this additional factor may be



reasonable as pedestrians waiting for a relatively long time be-
come impatient and, as a consequence, enhance their pressure
on the crowd with increasing waiting time. Summarizing, one
may formulate the following cost function:

C(t) =αN (N2(t)−N1(t))
+ αO(O2(t)−O1(t))
+ αT (T2(t)− T1(t)),

(3)

where the indices i = 1, 2 correspond to the incoming links,
and αN,O,T are proper weights. For simplicity, in the following
the specific choice αT = 0, αN = 1 and αO = α will be
considered.

Having specified the cost function, the next step is to define
a permeability function γi(t) for the whole set of incoming
links i at a given intersection point. In the formalism used
in this work [19], the possible choice of this function will
be restricted by some general properties: First, γi(t) is a
multiplicative “factor” entering the dynamic equation for the
outflows Oi(t), i.e., there is no outflow from link i if γi(t) = 0.
Second, γi(t) has to be normalized, that is, γi(t) ≤ 1. Third,
γi(t) should be a function of the current value of the cost
function C(t) exclusively. Fourth, γ2(t) = 1.0 − γ1(t), i.e.,
in the case of a simple merge or intersection of two flows,
the permeability for both incoming directions have to add
to one. With this setting, it is possible to fully describe a
self-organized oscillatory switching between flows in different
directions.

In the case of pedestrian motion where simultaneous flows
in both directions (and, hence, collisions between different
pedestrians) are still possible, a logistic function [19]

γ1,2(t) =
1

1 + βe±ηC(t)
(4)

can be used as a specification for γi(t) (see Fig. 2). A similar
continuous parametrization may be used for describing trans-
port processes in biological systems like the cardio-vascular
system or related biological transportation networks, where a
simultaneous service of different directions is possible under
the action of pressure gradients or incorportating diffusive
processes between the different flows. In contrast to such
situations, in technological systems such as vehicular traffic,
material transport in production systems by automatically
guided vehicles or conveyors, or baggage handling networks
at airports, a continuous parametrization with 0 ≤ γi(t) ≤ 1
would allow for potential collisions between objects trans-
ported in different directions. However, in the mentioned
systems, such collisions have to be avoided to reduce the
occurrence of accidents and the resulting damages of the
transported objects. For this purpose, it is beneficial to replace
the logistic function by a piecewise constant function that
can only approach binary values (corresponding to “stop” and
“go” commands for the respective flows) [20], [21], [22].
An example for such a function is shown in Fig. 2. As a
particular advantage, this choice allows a sharp switching
between both states. In order to avoid losses of efficiency due
to finite times required for accelerating and decelerating, an

Fig. 2. Two specific parametrizations for the permeability function in
dependence on the value of the cost C(t). The solid line shows a logistic
function (see Eq. (4)) that may be used for describing intersecting pedestrian
or biological flows, whereas the dotted line corresponds to the hysterethic
piecewise constant model used for controlling material flows in technological
systems within the framework of this study.

additional hysteresis effect may be introduced into the model,
which causes the service state to remain the same if the
traffic conditions in the operated and stopped directions are
comparable and thus introduces a preferred switching interval
at given traffic conditions.

In situations where the material flows can be operated in a
two-phase mode (e.g., merges or intersections without turning
conflicts), the resulting dynamics of the system is described
by a small set of equations relating the amounts of waiting
material Ni(t), the arrival flows Ai(t), the departure flows
Oi(t), and the permeability γi(t) of the different directions
(service phases) at the “intersection”. In addition to the above
considerations, one has to specify the relationship between
the change of the queue lengths and the associated arrival and
departure flows (which is rather trivial) and an explicit ex-
pression for the departure flows. Following the considerations
from Sec. I, in the case of a complete permeability of the
intersection in direction i (i.e., γi(t) = 1), the departure flow
Oi(t) from the respective queue occurs with maximum rate
Q̂i if there is material left in the queue, or otherwise with
the arrival rate Ai(t) of new material which is instantaneously
processed. Summarizing, one finds the following set of equa-
tions:

d

dt
Ni(t) = Ai(t)−Oi(t) (5)

Oi(t) = γi(t)×
{
Ai(t), Ni(t) = 0
Q̂i, Ni(t) > 0

(6)

γ1(t) =
{

1, C(t) < −∆C/2,
0, C(t) > ∆C/2 (7)

γ2(t) = 1− γ1(t) (8)

C(t) =

(∑
i∈L2

−
∑
i∈L1

)
(Ni(t) + αOi(t)) , (9)

where the permeability functions show a bistable behavior
in the interval [−∆C/2,∆C/2] of the cost function, Ls
are the sets of compatible flows that can be served in a
joint phase s, and Q̂i are the maximally possible flows in
the direction corresponding to the queue i. In order to give



different priorities to different queues, it is also possible to
use an asymmetric window [Cmin, Cmax] (or, under more
general conditions, route-specific thresholds Ci) for defining
the switching thresholds of the permeability function. Note
that the above set of equations neglects finite setup times τ
required for a safe operation of real-world material flows.
However, such setup times may be easily incorporated into
the model, such that it is general enough to describe network
flows in a variety of situations, including urban road traffic,
transportation of goods in factories (e.g., by automatically
guided vehicles), logistics, biological systems, or even the
routing of data packages in certain kinds of information
networks.

If the operation of a node in a material flow network requires
more than two disjoint service phases (for example, in case of
intersections in urban road networks where left-hand turning
needs to be taken into account), the above formalism can be
generalized in a straightforward way [22], yielding a control
of the dynamics by assigning a priority index

Ps(t) :=
∑
i∈Ls

(Ni(t) + αOi(t)) (10)

to each service phase Ls, operating the phase with the highest
priority index until the cost function

Cs(t) := Ps(t)−
1

S − 1

∑
s′ 6=s

Ps′(t). (11)

falls below a certain threshold, and then switching to the
next phase. Again, in order to avoid extraordinarily high
waiting times on connections with a low load, it is possible
to additionally penalize the total waiting time Ti(t) of the
material stored on each link by an additional term proportional
to Ti(t) in the definition of the priority index.

III. DYNAMICS OF ISOLATED INTERSECTIONS

In the case of an isolated merge or turning-free intersection
of two conflicting material flows, the main properties of the
switching dynamics can be analyzed analytically. In order to
have stable flow conditions without a successive congestion
of any of the links, the average outflow Oi over one service
period must equal the average inflow Ai on every link.
Assuming the link capacity being the same on every incoming
link (Q̂i = Q̂), there are only two dynamically relevant
parameters remaining: the total intersection load defined as
u = (A1 +A2)/Q̂, and the inflow ratio r := A2/A1 [22].

A. Constant Inflows

If the corresponding arrival flows Ai(t) are assumed to
be constant with sub-critical values (that is, the sum of all
inflows is beyond the capacity limit of the intersection1, it is
possible to derive exact expressions for the switching periods,
the duration of eventual extension periods, and the minimum
and maximum amounts of material stored on the different
transportation routes.

1In general, u < 1−f(τ)) where f is a monotonously increasing function
of the incorporated setup time τ , which is neglected in the considered model.

Fig. 3. Dependence of the green time g (in arbitrary units (AU)) on the
switching threshold ∆C for A1 = A2 = 0.25 and α = 1.0 in the regimes of
incomplete clearing, complete clearing, and complete clearing with extension
phase. While the second queue j is assumed to be completely cleared at
the beginning of the service period, the different lines correspond to initial
queue lengths of Ni = 20, 19, 18, . . . (from top to bottom). The dashed line
indicated the transition between incomplete and complete clearing.

Using a piecewise constant permeability function as de-
scribed in Sec. II with equal switching thresholds ∆C/2 for all
possible service states, one may easily convince oneself that
for an initial queue length N0

i , a complete clearing requires a
time

TC,i =
N0
i

Q̂i −Ai
. (12)

However, this complete clearing takes only place if the choice
of the switching threshold ∆C/2 is large enough, in particular,

∆C ≥ 2
[
AjN

0
i

Q̂i −Ai
+N0

j − αQ̂i
]
. (13)

Otherwise, the switching to a service of the remaining link j
occurs already after a time

TI,i =
αQ̂i +N0

i −N0
j + ∆C/2

Q̂i − (Ai −Aj)
. (14)

If this threshold is sufficiently large to allow a complete
clearing of the queue i, there may be eventually another
extension phase with a duration of

TE,i =
αAi −Nj(TC,i) + ∆C/2

Aj
(15)

with Nj(TCi
) = N0

j + AjTC,i. Following these arguments,
in all cases the duration of the service period for link i, Ti,
increases linearly with the switching threshold ∆C/2. Hence,
∆C may be thought of as a characteristic scale determining
the cycle time T of the traffic light for fixed traffic volumes
described by the incoming flows A1 and A2.

Fig. 3 illustrates the above analytical findings for two sym-
metric inflows with a road utilization of 0.5. In the dependence
of the green time on the switching threshold, two regimes can



be distinguished: complete clearing and extension (lowest line
with a constant slope) and incomplete clearing (shifted lines
with smaller slope). Both regimes are separated by a region
where a complete clearing of the queue without an extension
phase takes place. The width of this transitional regime is
determined by the value of α, and the corresponding time
increases linearly with the initial queue length N0

i . For small
values of N0

i (here: N0
i < 4, there is always a complete

clearing of the queue within one service period due to the
drain force realized by the parameter α. In contrast to this,
for larger initial queues, the green time required for complete
clearing increases linearly with both switching threshold ∆C
and initial queue length N0

i as expected.
The above results suggest that for sufficiently large ∆C,

extension phases can be found on both incoming links for a
wide range of arrival rates (see [22]). In general, the switching
dynamics of an isolated intersection can be qualitatively clas-
sified by considering whether the service period of one or both
queues leads to an incomplete (I) or complete (C) clearing and
even an eventual extension (E) phase. The decision which of
the possible combinations (II, IC, IE, CC, CE, or EE) is real-
ized is determined by the inflows A1 and A2 (or, alternatively,
the quantities u and r), the switching threshold ∆C/2 of the
permeability function, and the weight α quantifying the impact
of the net drain. Previous investigations [22] have revealed that
concerning the qualitative switching dynamics, there are two
striking features: First, the presence of an incomplete clearing
requires a rather low traffic volume on the considered link,
whereas there is much more traffic on the second one (i.e.,
for low values of r and high values of u). Such a phase can
only affect the less frequently used link. Second, extension
states can be found at almost all traffic conditions, except of
such with a sufficiently high intersection load u. Moreover,
as one would expect, there is a strong correlation between
long green times and the presence of extension phases. Note,
however, that the presence of an extension phase must not
necessarily correspond to optimal traffic conditions in terms
of usage of the total node capacity, which is related to the
freedom in defining the switching threshold ∆C.

Summarizing, the switching threshold parameter ∆C deter-
mines (together with the arrival flow rates and initial queue
lengths) the typical durations of a service period g in terms
of a monotonously increasing piecewise linear function. In
addition, the parameter α weighting the influence of the net
drain due to the current departure flows is responsible for a
complete clearing of the queue within a finite interval of ∆C.
Choosing parameter combinations within this range, the self-
organized control strategy leads to an instantaneous switching
to the next service period as the queue has been completely
cleared. If α → 0, the switching period is exclusively deter-
mined by the net “pressure” difference N2(t) − N1(t), such
that for arbitrary initial conditions, there is no guarantee that
any of the involved queues will be completely cleared. If in
contrast α� 1, the drain will dominate the dynamics, which
means that a switching can only take place when the presently
served queue is empty. From this perspective, this case has a

Fig. 4. Emergence of phase-locked states in the case of a periodic arrival flow
A1(t) = 〈A1〉 (1 + δA1 sin(2πt/Tm)) on link 1 and a constant arrival flow
on link 2. The results are shown for arrival flows with 〈A1〉 = A2 = 0.25
(all values are normalized with respect to the link capacity Q̂), ∆C = 20
and α = 1.0. Gray-scale colors correspond to the ratio between arrival flow
period Tm and switching period T , the black lines indicate parameter regions
where the deviation from a perfect 1:1 to 4:1 frequency locking (from left to
right) is smaller than 5%.

strong similarity to one of the standard clearing policies, “clear
largest buffer” (CLB).

B. Periodic Inflows

The case of constant arrival flows of material discussed
above is rather artificial. For example, in an urban road
network, vehicles are usually bundled to platoons by the action
of traffic lights. Since these traffic lights operate in a periodic
way, the outflow on a link i and, hence, the inflow to the
queue at the downstream end of this link ia described by a
periodic function, too. If the arrival flows are determined by a
periodic function with period Tm, for some distinct interval of
these periods (which depends on ∆C), the switching period
T of the self-organized control locks to this external demand
period [20]. If the amplitude of the periodic arrival flow
increases, the width of this locking window increases as well.
Moreover, there are other windows of higher-order frequency
locking with a similar behavior, which are indicated in Fig. 4.
The detailed position and width of the corresponding Arnold
tongues is determined by the parameters α and ∆C of the
permeability function γi(t) and the average inflows 〈A1〉 and
〈A2〉. In general, the choice of these parameters again yields a
naturally preferred switching frequency in the case of constant
inflows, whose existence gives rise to the non-trivial locking
intervals.

It has to be mentioned that the existence of various phase-
locked states can be observed independently of the shape of
the periodic functions. In particular, under certain situations,
non-trivial m:n locking states can be found [20]. One may
speculate that the appearance and width of such states can be
enhanced by different modifications of the scenario studied in
this work, for example, a) by decreasing the critical switching



threshold ∆C (i.e., allowing for a complete clearing of all
queues with extension phases under almost all conditions)
or adjusting it in a way that the preferred switching time is
close to the modulation period, b) by changing from “positive”
to “negative” hysteresis in the permeability function (i.e.,
choosing a negative value of ∆C), which would correspond
to an anticipative switching regime, c) by choosing continuous
instead of piecewise constant permeability functions, or d) by
considering periodic arrival flows with more pronounced tem-
poral variability profiles (for example, arrival flows described
by rectangular (on-off) functions instead of sinusoidals). It
should be noted that options b) and c) have been used in a
recent study [20], revealing a much larger variety of locking
windows than in the scenario shown in Fig. 4. A detailed
examination of the corresponding dynamic effects is however
outside the scope of the presented study.

IV. DYNAMICS OF COUPLED INTERSECTIONS

Whereas the dynamics of isolated intersections can be
(under certain assumptions) treated analytically, the practically
more relevant case of controlling networks of intersecting
flows is more challenging. In the following, this problem is
hence addressed by means of simulations.

A. Specification of the Scenario

In order to keep the number of variables as low as possible,
in the following, some simplifications will be made:

1) For avoiding an unlimited congestion of the incoming
links, which would finally affect the whole network, it
is required that the sum of the maximum inflows for
all necessary service phases of a given intersection is
sufficiently smaller than the maximum link capacity Q̂,
which is assumed to be equal for all links.

2) The studied networks consist only of nodes of degree
k = 4 (i.e., with four pairs of ingoing and outcoming
links which connect neighboring pairs of nodes). A
consideration of nodes with k = 3 (i.e., a merge or
diverge) is also possible, however, the case of k > 4 is
not considered here. All links are assumed to allow a
bi-directional traffic.

3) Motivated by the problem of vehicular traffic in net-
works with right-hand driving policy, for every intersec-
tion and every incoming link, only right-hand turning
is permitted with a given probability p ∈ [0, 1]. In
contrast to this, direct left-hand turning will remain
forbidden, as the corresponding possibility would call
for two additional turning phases at least if the arrival
flows are sufficiently large. Moreover, in the case of road
networks with bi-directional traffic, left-hand turning
may be effectively achieved by a sequence of right-hand
turnings.

Under these assumptions, the cycle of successive service
periods consists of only two phases. The dynamic coupling of
different intersection points in a material flow network requires
to represent the inflows at a given node by the outflows
from neighboring nodes at an earlier time. In a zeroth-order

approximation, the corresponding time delay is assumed to
equal the free-flow travel time τfreei on the respective link,

Ai(t) =
∑
j 6=i

αjiOj(t− τfreei ), (16)

where αji is the fraction of the flow on link j which is turning
to link i (αji = p for right-hand turning, αji = 0 for left-
hand-turning, and αji = 1 − p otherwise). As a necessary
condition of material conservation,

∑
i αji = 1 for all links

j. To approach more realistic conditions, the free-flow travel
time has to be replaced by a load-dependent travel time, i.e., a
time-dependent travel time which is determined by the amount
of material waiting on the link. A very simple way for doing
this would be setting

τi(t) =
li −Ni(t)∆l

vfree
, (17)

where li is the total length of the road between two neigh-
boring intersections and ∆l the space occupied by one of the
queued objects.

Using the described coupling between neighboring nodes,
the switching dynamics has been studied for regular grid net-
works with 25 nodes where the material flows are operated the
same way (i.e., with the same parameters of the permeability
function) at all intersections. In a simplified setting without
load-dependent travel times and left-hand turning, it has been
observed that a network-wide self-organization of the flows
takes place that leads to a certain minimization of the total
amount of waiting material [21]. As one increases the preferred
switching threshold determined by the parameter ∆C, the
total capacity of the network, but also the amount of delayed
material successively increase.

B. Phase Coherence Analysis

In order to better understand the dynamics of the self-
organization process due to the proposed decentralized control,
a detailed phase coherence analysis has been performed. For
evaluating the presence of phase coherence in this context,
the appropriate definition of a monotonously increasing phase
variable is necessary. Without loss of generality, the initial
phase of node j has been defined in a way that φj = 0 cor-
responds to the time of the first switching of its permeability
function. In a similar way, φj = (n − 1)π then corresponds
to the time of the n-th switching at this node. Between these
switching times, the phase variable φ(t) is defined by linear
interpolation. Although this definition leads to an increase of
the phase which may be periodically modulated if the “on”
and “off” times for one specific direction are not symmetric,
in the long-term limit, these variables may be used for a phase
coherence analysis.

In order to quantify the phase coherence in a multivariate
way, different approaches based on the mean resultant length

rjk =
∣∣∣〈ei∆φjk(t)

〉
t

∣∣∣ =
1
T

∣∣∣∣∣
T∑
t=1

ei∆φjk(t)

∣∣∣∣∣ (18)



(with ∆φjk(t) = φk(t) − φj(t)) as a particularly useful
bivariate measure for phase coherence have been considered
[21]: a) global or neighbor-based averages of this pairwise
phase coherence index, b) average mean resultant length of all
intersections with respect to their mean-field, c) the synchro-
nization cluster strength computed using the synchronization
cluster analysis algorithm of Allefeld and Kurths [23], d)
eigenvalue statistics obtained from the matrix of pairwise
indices in terms of the generalized synchronization cluster
analysis [24], and e) the LVD dimension density method [20],
[21] which describes the average exponential scaling of the
residual variances obtained from the eigenvalues.

Whereas all mentioned measures yield comparable results
for model systems like a network of Kuramoto phase oscil-
lators with long-range interactions [21], they show a quan-
titatively different behavior when applied to the switching
dynamics in the considered material flow model, which is most
likely explained by their different sensitivity to heterogeneity
effects. In particular, the global and neighbor-based averages
and the average coherence with the mean-field quantify only
the mean degree of phase coherence, but are not sensitive
to detect effects of spatial heterogeneity. The synchronization
cluster strength assumes implicitly the presence of a unique
synchronization cluster2, which is under general conditions a
too strong assumption, especially during the transition from
non-coherent to phase-coherent dynamics. The number and
average strength of synchronization clusters based on the gen-
eralized synchronization cluster analysis allow a better char-
acterization of heterogeneity effects, but yield rather coarse
measures. Finally, the phase coherence parameter based on the
LVD dimension density approach is well suited to quantify
heterogeneities, but is only a coarse and uncertain measure
for the strength of phase synchronization. In summary, a
combined consideration of different approaches is here helpful
to distinguish information about the average phase coherence
and its heterogeneity.

Looking at the dynamics of the material flow model in
some more detail, it turns out that the probability αji = p
of right-hand turning serves as a coupling parameter between
neighboring intersections (at least as long as possible sources
or sinks along the links of the network are neglected): If
p is large, only a lower amount of material crossing one
intersection arrives also the next one, which corresponds to
a low coupling of the dynamics, and vice versa. In a two-
parameter study in dependence on both p and the switching
threshold ∆C, multivariate phase coherence analysis reveals
pronounced Arnold tongues that correspond to different phase
coherent regimes in the system (see Fig. 5). These tongues are
separated by parameter regions that correspond to an incoher-
ent switching at the different nodes. The presence of multiple

2Note that the measures used here for quantifying phase coherence have
been introduced in the context of phase synchronization analysis, while the
notation of phase synchronization is doubtful in the context considered here
since the intersecting material flows subjected to decentralized control do
not represent self-sustained oscillators, which are a prerequisite for phase
synchronization in the standard definition [25].

Fig. 5. Mean values (upper panels) and standard deviations (lower panels)
of the mean pairwise mean resultant length

〈
rjk

〉
(left) and synchronization

cluster strength rC (right), obtained from different parts of a set of long
simulation runs for a regular 5×5 grid network with constant travel times
τ = 30s, fixed randomly chosen inflows Ai on the links entering from
outside the network, and α = 0.1. Whereas in the phase coherent regimes,
this coherence is found to be stable in time (low standard deviations), in
the incoherent parts, the considered measures fluctuate also significantly
in time (high standard deviations). Note that the results concerning the
synchronization cluster strength rC may be less reliable, as the corresponding
algorithm does not necessarily converge correctly in all cases.

regimes appears to be a consequence of the presence of two
disjoint time scales in the dynamics: the preferred switching
period described by the threshold ∆C in the permeability
functions γi(t), and the free-flow travel times τfreei that are
equal for all links in the considered grid-like topology.

C. Synchronization Analysis

In the previous paragraphs, evidence has been reported for
different regimes with a coherent switching at different nodes.
As the notation of phase synchronization cannot be used in
this context without criticism due to the missing of well-
defined self-sustained oscillators, it is of interest how the above
findings may be interpreted in a synchronization context. In
order to avoid systematic errors in the estimation of phase
coherence indices due to the piecewise linear phase definition
applied in the context of switching dynamics, it may be benefi-
cial to use alternative synchronicity concepts instead that refer
to the isochronicity (or fixed-lag synchronicity) of switching
events. Similar approaches are already used for quantifying
synchronization of events, for example, in neurophysiological
systems.

Consider the switching dynamics of two individual inter-
sections in the network, which consist of two distinct phases
under the assumptions described above. In the case of a phase
coherent dynamics, the cycle length at all intersections must
be the same. Then, for every pair of oscillations, the following
quantities are constructed:
• For the second last switching event at intersection j, the

switching event at intersection k is identified which has a
minimum time lag with respect to this event. This time lag



Fig. 6. Mean standard deviations of the switching-time differences at different
intersections as a function of the switching threshold parameter ∆C for α =
0.1 and p = 0.05.

is computed. After this, the sequences of switching events
are traced backwards in time for both intersections event-
by-event, leading to a series of time differences ∆t(0)

jk .
• In a similar way, a sequence of time differences ∆t(1)

jk is
constructed where the reference event at intersection k is
replace by its predecessor.

In the case of (almost) isochronous switching, the values of
∆t(0)

jk will be centered around zero with a narrow distribution.
If the switching is synchronous with a certain lag, ∆t(0)

jk

and/or ∆t(1)
jk are characterized by a small standard deviation

with non-zero mean (depending on the symmetry of the
switching dynamics). Following this idea, the mean value of
∆t(0)

jk can be used as a measure of isochronicity, whereas the
minimum of the standard deviations of both sequences yields
a measure for the presence of (lagged) event synchronicity,
and the corresponding mean value determines the average lag.
The concept of event synchronization analysis can be further
refined, however, this is outside of the scope of the presented
work. For example, in the case of delays covering more than
one switching cycle, an optimal lag could be inferred by
considering the standard deviations of all event sequences
that are shifted with respect to each other by ±k events and
identifying the minimum of the resulting function.

The results of this event synchronization analysis (see
Fig. 6) are in good qualitative agreement with those obtained
from the phase coherence analysis [21]. In particular, for a
fixed turning probability p, there are distinct values of the
switching threshold for which the standard deviations of the
mutual event-time differences between different intersections
approach values near zero, indicating a possibly lagged syn-
chronization of the switching.

D. Heterogeneity Effects

The structural properties of the system studied so far have
been fully homogeneous in space. In order to understand

the impact of corresponding heterogeneities to the coherent
switching dynamics and, hence, the optimal self-organization
of the network, it has been studied how distributed travel times
corresponding to a deviation from the regular grid structure
influence the degree of synchronization in the switching dy-
namics of the network. In a recent paper [21], it has been
demonstrated that the measures of phase coherence discussed
above decay only slowly as the disorder of the system in-
creases. In general, this disorder is reflected in an increasing
amount of delayed material and a systematic tendency towards
shorter service intervals. From this, one may argue that the
presence of heterogeneities limits the capability of material
flow systems to optimally self-organize in terms of the local
control strategy used in this work.

It is likely that also an uneven spatial distribution of
other parameters (in particular, turning probabilities, switching
thresholds, or the mutual weights of the different force terms
entering the cost function C(t)) will lead to similar conse-
quences. Of more fundamental interest, however, is the ques-
tion how a consideration of dynamically adjusted travel times
incorporating queued road sections as well as acceleration
and deceleration effects may affect the resulting material flow
dynamics. This question will be further addressed in future
studies.

V. CONCLUSIONS

In many socio-economic systems, in particular in the fields
of production and logistics, there has already been a paradigm
shift from a centralized control towards a decentralized self-
organization of material flows [26]. In the special case of urban
traffic networks, the situation is however still quite different,
as local control strategies have so far not been very successful
in practical implementations. A particular reason for this is
that “traditional” decentralized control approaches based on
clearing policies may lead to unstable traffic conditions due
to the presence of dynamic feedbacks. The results reported in
this contribution may be an important step in overcoming these
problems. However, for specific practical applications, there
may be a need for incorporating additional mechanisms for
stabilizing the large-scale dynamics, for example, by including
demand anticipation over a finite time horizon [9], [27] or by
implementing additional heuristic strategies for avoiding local
deadlocks [9], [28].

In the presented work, a general concept has been discussed
for serving conflicting material flows in general networks
in a fully demand-dependent way. Apart from the potential
applicability of this approach to controlling material flows in
real-world networks, it may also be used for modelling and
understanding flows in a variety of other (in particular, biolog-
ical) systems. The key ingredient of a permeability function
which is determined by gradient forces like net pressures or
drains can be specified in such systems for describing discrete
as well as continuous flows.

It has been shown that an appropriate specification of
the permeability function leads to a fully self-organized and
synchronized dynamics of the traffic at intersections, which is



significantly more flexible than traditional approaches using a
centrally enforced cyclic traffic light control. Hence, using the
presented approach for implementing a decentralized control
strategy at all intersections of a material flow network, the
time-delayed local coupling between the flows at neighboring
nodes leads to the emergence of a network-wide phase coher-
ent switching dynamics that can be understood in the context
of event synchronization. As a particularly interesting feature,
the presence of multiple disjoint synchronization regimes
in networks has been revealed, which is a so far not yet
fully understood dynamical phenomenon possibly related to
the presence of two intrinsic time scales of the dynamics,
corresponding to the preferred switching intervals prescribed
by the parameter ∆C of the considered model and the typical
travel times τi on the different links.

Although in the presented considerations, a continuous
flow approximation has been used for describing all material
flows, theoretical investigations [29] as well as simulations not
discussed here in detail suggest that the resulting dynamics
on the network is very similar if the individual transportation
units or agents are explicitly considered. Moreover, in this
study, a variety of simplifications have been made, which are
necessary for a detailed analytical treatment of the dynami-
cal properties of the permeability model. Additional effects
have to be explicitly taken into account in future studies,
including the influence of spatial heterogeneity and distributed
parameters, the dynamical feedback between queue lengths
and travel times, the definition of setup phases, acceleration
effects leading to a delayed clearing of queues, etc. It will be of
particular interest how these effects influence the emergence of
a synchronized switching and, as a consequence, the efficiency
of a self-organized traffic light control within the network.

The question how the observed self-organization processes
are related to an optimization of network flows has not been
discussed in much detail in this paper. From the perspective
of temporal variability, synchronization introducing regularity
of material flows on large spatial scales can be considered
as a particular optimization goal. However, regarding the
minimization of throughput (or, alternatively, waiting) times
in the network, one has to recall that the duration of service
periods increases monotonously with the switching threshold
∆C. However, when tuning this parameter in a way that
corresponds to a transition from a non-synchronous to a
synchronous switching, the corresponding increase of delayed
material is significantly reduced. These preliminary results
have so far only been verified for switching intervals without
setup times. Recent results in the field of urban traffic networks
[28] however suggest that the transition to a synchronized, not
necessarily phase-coherent service could lead to a significant
decrease in the total waiting times. The further validation of
this hypothesis within a more general framework of arbitrary
material flow networks will be an important topic of future
research.
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