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Transportation is one of the most crucial components in supply networks. In transporta-
tion lines, there exists a finite time between products leaving a point and arriving to
another point in the supply network. This period of time is the delay, which accompanies
all transportation lines present in the entire network. Delay is a well-known limitation,
which is inevitable and pervasive in the network causing synchronization problems, fluc-
tuating or excessive inventories, and lack of robustness of inventories against cyclic
perturbations. The end results of such undesirable effects directly reflect to costs. This
paper is motivated to reveal the mechanisms leading to these problems by analytically
characterizing qualitative behavior of supply network dynamics modeled by continuous-
time differential equations. The presence of delay forms the main challenge in the analy-
sis and this is tackled by developing/utilizing the tools emerging from delay systems and
control theory. While the backbone of the paper addresses the qualitative behavior in
presence of a single delay representing delays in all transportation paths, it also reveals
how to choose production rates and transportation delay without inducing any undesir-
able effects mentioned. Thorough cases studies with single and multiple delays are pre-
sented to demonstrate the effectiveness of the approaches proposed.
�DOI: 10.1115/1.3072144�
Introduction
Supply networks �1–6� are an ensemble of interconnections of

ustomers, suppliers, manufacturing units, companies, and sources
Fig. 1�. While supplies flow along the directed links of these
etworks to satisfy the changing demand of customers �solid lines
n Fig. 1�, the information concerning the product orders flows in
he opposite direction �dashed lines in Fig. 1�. One of the main
bjectives in supply network management is to control individual
roduction rates such that inventories maintain their desired levels
hen responding to customer demands. Although this seems to be
simplistic proposition, supply network management is challeng-

ng �6–10�.
Supply networks inherently carry major limitations in their re-

ponsiveness and synchronization �6,11–13� since their dynamics
espond to demand variations after a period of time needed for
nformation collection, perception, decision making, communica-
ion, and transportation. This period of time, which is known as
elay, hampers supply network management �3,4,6,11–14�. Since
ransportation is one of the major components of supply networks,
he delay arising due to transport of products is the focus in this
aper with particular interest in analyzing how a delay affects
nventory dynamics.

The most undesirable effect delay brings to supply networks is
hat inventories may become oscillatory, underdamped, and even
nstable as a result of cross coupling between delayed information
nd decision making �feedback loop�. Although these effects seem
o be similar to those detected in Ref. �15�, the qualitative and
uantitative conditions that give rise to these similarities with and
ithout delays are quite different.

1A shorter version of this manuscript was presented at ASME-IMECE Conference
n Chicago, IL, in November 2006 with Paper No. 14782.
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This paper is aligned with the philosophy of “system’s think-
ing” adapted earlier in Refs. �3,4,6,9,16,57�. We depart from a
delay-free mathematical model �15� of a supply network dynam-
ics, incorporate a transportation delay, and connect the arising
model with analytical tools we develop via the advancements in
the field of time delay systems and control. Analytical tools are
derived in order to explain qualitative behavior of supply net-
works and inventory variations in the presence of transportation
delay. For this umbrella objective, we first take all transportation
delays in the network identical, �. Particularly we wish to reveal
the so-called stability maps on which stability versus instability of
the supply network is characterized with respect to the intrinsic
network parameters and this delay �. In addition to these, we put
light on bullwhip effects �6,17–20,56� and we explain how supply
network becomes more prone to exhibiting bullwhip in the pres-
ence of delay �.

What differentiates this work from Refs. �3,4,9,13� is that we
develop analytical approaches in analyzing higher degrees of
freedom inventory dynamics in which transportation delay � is
taken into account as a first-in-first-out �FIFO� parameter. It is
known, however, that analyzing stability with multiple delay pres-
ence is orders of magnitude more difficult due to the NP hard
complexity of the problem �21�. A brief discussion on recently
developed methodologies in treating stability problems with mul-
tiple delays is included and a motivational problem with four in-
dependent transportation delays is treated by advanced clustering
with frequency sweeping �ACFS� methodology �22� developed
recently. Arising stability results, simulations, and interpretations
are provided.

To our best knowledge, the final results of our study in the
context of supply networks are new: �a� We analyze the effects of
transportation delay to stability and bullwhip; �b� we analytically
characterize stability �Sec. 3� and bullwhip phenomenon �Sec. 4�
with respect to the eigenvalues of a characteristic matrix, param-
eters defining the network and delay; �c� with the tools developed,
we explain analytically how the network becomes more prone to

exhibit bullwhip effects in the presence of delays; �d� we present
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ome preliminary results where multiple delays are considered.
ase studies �Sec. 5� are provided to demonstrate the effective-
ess and impacts of obtained results.

Notations. R �C and Z� denotes the real �complex and integer�
umbers. R− and R+ �Z− and Z+� is the set of negative and positive
eal �integer� numbers, respectively; C+ �C−� corresponds to the
ight �left� half complex plane. The imaginary axis of C is denoted
y jR, where j=�−1. We use s�C for the Laplace variable,
hose real and imaginary parts are R�s� and I�s�, respectively.
oldface is used to indicate vectors and matrices. The entry in the

th row and the jth column of a matrix M�Rn�n is represented by
ij, the identity matrix with appropriate dimensions is I, and a

ector v with entries vi is denoted by v= �vi�.

Preliminaries
In this section, we first present the problem formulation and a

rief mathematical description of the delay-free supply network
odel borrowed from Ref. �15�. We take a supply network of n

uppliers i delivering products to other suppliers � or to costum-
rs. It is assumed in this study that each supplier delivers one type
f product only. More complicated network structures are left for
uture work. The rate at which supplier i delivers products to and
onsumes product from supplier � is given by d�iXi�t� and

i�Xi�t�, respectively, where Xi�t��0 denotes the production rate.
he coefficients ci� define an input matrix C and the entries di�
efine an output matrix D, where 0�di� ,ci��1. Since at most
00% of the products produced by all � suppliers can be delivered
o i suppliers, the physical constraint ��ci��1 holds. The inven-
ory level Ni�t� at supplier i changes as

dNi�t�
dt

= �
�

�di� − ci��X��t� + Yi�t� �1�

here the external demand is denoted by Yi�t�. In order to keep

he inventory at some desired level N̄i, any changes in the demand
i�t� require an adaptation of the production rates Xi�t� governed
y

dXi�t�
dt

=
1

T
�Wi�Ni�t�,dNi�t�/dt� − Xi�t�� �2�

here T is the time constant, Wi is a nonlinear function dependent
n the inventories Ni�t� and their change in time dNi�t� /dt. The
unction Wi is assumed to be non-negative and it decreases with
ncreasing inventories.

It is often implicitly needed in queuing theory to reveal how the
tationary state �equilibrium� of the supply network behaves �in a
table or unstable regime�. The state of the equilibrium is also of
ractical interest as one needs to reveal how a perfectly equili-
rated inventory dynamically behaves under small perturbations
nd in the presence of delays, see Refs. �3,4,9� and references
herein.

After normalizing time t by T, �= t /T and linearization of Eqs.

Factory

Source

Distributor

Information flowCustomer

Retailer branch

TransportationTransportation

Transportation

ig. 1 A generic supply-demand flow from source to custom-
rs, inspired by Sterman †6‡
1� and �2�, we have
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d2x���
d�2 + �I + B�D − C��

dx���
d�

+ A�D − C�x��� = Ay��� + B
dy���

d�

�3�

where x���= �xi���� is the vector carrying variations in inventories
and production rates and y���= �yi���� is the vector with entries
being variations in consumption rates; A and B are both positive
constants and they represent the local derivatives of the nonlinear
function Wi with respect to Ni and dNi /dt, respectively, see Ref.
�15� for details.

Since each supplier is assumed to produce only one type of
product i, the output matrix D has a special structure—it is diag-
onal. Furthermore, we shall investigate the case when output is at
its maximum delivery rate setting di�=1 or D=I. Other cases
when di� takes different numerical values can be easily adapted to
the framework developed in this paper. We wish state that the
choice2 of a diagonal matrix D also allows a Jordan decomposi-
tion, which in return enables reconstructing the supply network as
a connection of quasisupply dynamics arranged in a chain �15�.
Furthermore, input matrix C can be transformed in either a diag-
onal or a Jordan normal form J by a matrix T, T−1CT=J, and due
to the particular form of C its eigenvalues or equivalently the
entries Jii have the property 0� �Jii��1. Defining ����= ��i����
=T−1x��� and h���= �hi����=T−1�Ay���+Bdy��� /d��, we obtain a
set of coupled second-order differential equations:

d2�i���
d�2 + 2�i

d�i���
d�

+ �i
2�i��� = bi�A�i+1��� + B

d�i+1���
d�

	 + hi���

�4�

�i =
1 + B�1 − Jii�

2
, �i = �A�1 − Jii�, bi = Ji,i+1 �5�

which can be seen as a chain of connected damped oscillators
with damping constants �i, natural frequencies �i, and external
forcing hi���. The remaining terms on the right hand side of Eq.
�4� appear due to the mutual interactions of the suppliers with
each other, and as per Jordan decomposition, bi is either 1 or 0.

3 Stability Analysis With Transport Delays
In order to analyze the stability of the supply network, one

needs to understand how the delay enters in the differential equa-
tion �4� and how delay is mathematically described. After incor-
porating delay � into Eq. �4�, analytical approaches that are free
of conservatism are developed to assess the stability of the supply
network with respect to �. Arising managerial strategies are dis-
cussed along with sensitivity of the network to bullwhip effects.
This section concludes with discussions in analyzing supply net-
works with multiple delays �v, v=1, . . . , v̄, where v̄ is the number
of transportation lines.

3.1 Delays. In this study, we consider delays as pure time
translations, at an amount of �, where products shipped at time t
arrive their destinations at time t+� �Fig. 2�. This choice is in
compliance with the earlier work �3,4,9� and references therein,
where appropriateness of utilizing pure delays is pointed out. De-
pending on the physics of the problem, one may also choose dis-
tribution functions, such as gamma and Erlang functions as dis-
cussed in Refs. �6,23�. The main difference between pure delays
and distributed delays is as follows �2,3,6,24,25�. Physically, pure
delays correspond to FIFO type of behavior, while distributed
delays model some degree of mixing where first-in is not neces-
sarily first-out. Mathematically speaking, a pure delay leads to
infinite-dimensional systems described by functional differential
equations and distributed delays lead to integrodifferential equa-
tions, which can correspond to finite- or infinite-dimensional sys-

2
In Sec. 3.4, we shall show other directions to relax these assumptions.

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
d
t
t
c
o
�

e
p
R
w

A
d
p

t
r
t
s

l
n
s
s
i
h

w
p
i
s
a
t
m
�
d
l
c
p

F
v
c
a
p

J

Downlo
ems depending on the distribution law �26,27�. Often, however,
istributed delays are only approximations of pure delays, and in
he limiting case when variance of a distribution becomes zero,
he distribution becomes an infinite-dimensional function pre-
isely corresponding to pure delay �6,23�. For other delay models
f time-dependent and state-dependent type, please refer to Refs.
6,28–30�.

3.2 Governing Dynamics With Pure Delays. As discussed
arlier, we wish to study delay effects in product deliveries, hence
ure �discrete� delay affects the terms in the output matrix D.
econstructing Eq. �3�, the governing dynamics of the supply net-
ork with delay � is obtained as

d2�i���
d�2 + B

d�i�� − ��
d�

+ �1 − BJii�
d�i���

d�
+ A�i�� − �� − AJii�i���

= bi�A�i+1��� + B
d�i+1���

d�
	 + hi��� �6�

s expected, one recovers Eq. �4� by setting �=0 in the above
elay differential equation �DDE�. See Ref. �5� for some of the
reliminary steps along these lines.

In the following, we will perform stability analysis and inves-
igate the sensitivity of bullwhip effects in the DDE. These will
esult how input rates Jii and parameters defining the local varia-
ions of the inventories, A and B, affect supply network with re-
pect to delay �.

3.3 Stability Analysis. Stability analysis is adapted by fol-
owing a frequency sweeping idea �31–34�. This idea enables a
onconservative approach in obtaining stability features of the
upply network with respect to delay �. In order to assess the
tability of the linear supply network dynamics �6�, we first obtain
ts characteristic equation F�s ,��=0 in Laplace domain using its
omogeneous part and assuming zero initial conditions:

F�s,�� = 

i=1

n

�f i�s,��� = 0

�7�
f i�s,�� = �s2 + �1 − BJii�s − AJii� + �Bs + A�e−�s

here n is the number of quasisupply nodes. The stability analysis
roblem is reduced to developing a technique to verify the stabil-
ty condition for f i�s ,��=0, i=1, . . . ,n. This verification is not
traightforward since the characteristic equation is transcendental
nd thus it has an infinite number of roots with particular proper-
ies. These complications open new research directions �35� in

athematics �21,27,28�, numerics �36�, and engineering
32,37–39� that attempt to assess the stability of similar infinite-
imensional problems with respect to system parameters and de-
ays. Below, we develop tools to tackle the infinite-dimensional
omplexity of F�s ,��=0 toward assessing the stability of the sup-
ly network.

The continuity principle �40,41� states that the rightmost root of
�s ,��=0 moves continuously in C with respect to continuous
ariations in �. Hence, stability or instability of the dynamics may
hange only when a characteristic root crosses the imaginary axis
t s=	j �	
0 without loss of generality� for some ��. If one may
ropose a technique to detect all �s=	�j, ��� pairs for which

� �

Step inflow
at time = � Pure

(discrete
delay mod

Time, �

Fig. 2 Pure „discrete… delay mode
and an output
f i�	 j ,� �=0, i=1, . . . ,n, then it is possible to calculate toward

ournal of Dynamic Systems, Measurement, and Control
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which direction these characteristic roots move across the imagi-
nary axis �either toward C− or C+� by using the following sensi-
tivity expression:

Si�s,�� =
ds

d�
= −

� f i�s,��
��

� � f i�s,��
�s

	−1

If R�Si�	�j ,�����0 ��0�, then s=	�j root on the imaginary axis
will move toward right half complex plane favoring instability �or
left half complex plane favoring stability� as �� increases infini-
tesimally. With this information, one can easily account how
many unstable roots exist in C+ for any given delay �. Obviously,
no roots in C+ indicate stability, otherwise instability.

3.3.1 Detection of Imaginary Roots. In order to detect the
imaginary roots of f i�s ,��=0, a practical technique, which is
based on a geometrical characterization, is deployed. A similar
approach was followed in Refs. �42,43�. We first solve for the
exponential term and substitute s=	j,

e�	j =
B	j + A

	2 + �BJii − 1�	j + AJii
�8�

which can be analyzed for its magnitude and argument in complex
domain C.

Notice that ��e�s�s=	j�=1 for ∀��R depicts a unit circle on C.
Therefore, for an imaginary root s=	j of f i�s ,�� to exist, the unit
circle and the curve created by the magnitude condition of the
right hand side of Eq. �8� should intersect. Denote this curve by
��	�,

��	� =� B2	2 + A2

�	2 + AJii�2 + �BJii − 1�2	2 �9�

For given parameters A, B, and Jii, the geometry of the curve ��	�
can be checked if it intersects with the unit circle as 	 sweeps
from 0 to +. The intersections take place only when ��	��=1.
The way of expressing the problem as a geometric interaction
between a unit circle and a frequency dependent curve ��	� en-
ables a convenient way of solving for 	� by decoupling the pres-
ence of � in the magnitude condition. Once 	� values are de-
tected, the argument condition from Eq. �8� is used to solve for the
delay ��.

It is clear that existence of solution pairs ���, 	�� and ultimately
the stability assessment is dependent on the geometry of ��	�. In
the following, we will study this geometry to characterize the
stability of the supply network.

3.3.2 Geometric Classification of the Curve ��	� . Notice that
when 	→, the curve � reaches to the origin of the complex
plane. The properties curve � exhibits for finite 	 are classified
below.

LEMMA 1. For any eigenvalue 0�Jii�1, there can be at most
two distinct 	=	��0 values for which ��	��=1.

Proof. If ��	��=1, then from Eq. �9� we have

f�	�� = 	�4 + �2AJii + �BJii − 1�2 − B2�	�2 + A2�Jii
2 − 1� = 0

�10�

Since the coefficients of s in the characteristic equation F�s ,�� are
� �

Step outlow
at time = � +�

Time, �
�

and its effects between an input
)
el

ling
real, 	 and −	 satisfy Eq. �10� and F�s ,��=0 concurrently. For
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his reason, it is sufficient to inspect Eq. �10� for the quadratic
orm �	��2. This equation has two �	��2 solutions, which are dis-
inct since the discriminant of Eq. �10� is nonzero. �

Possible scenarios suggested by the above lemma are sketched
n Fig. 3. There can be either one �point C1� or two intersection
oints �points D1 and D2� between ��	� and the unit circle. Fur-
hermore, points C and D represent �0=��0� and the arrows indi-
ate increasing 	 directions from 0 to +. Clearly, the intersection
oints C1, D1, and D2 will yield the solution pair �	� ,��� we are
eeking for.

At this point, we wish to partition the discussion with respect to
he eigenvalues of J.

Eigenvalues 0�Jii�1. The curve ��	� always initiates outside
he unit circle on the real line, i.e., �0�1, left sketch in Fig. 3.
ince ��	� reaches to zero when 	→ +, it is guaranteed that
�	� intersects the unit circle at least once, for instance, at point

1.
LEMMA 2. When eigenvalues are strictly less than 1, 0�Jii
1, the curve ��	� intersects the unit circle only at one point. In

ther words, there exists only one 	=	� that satisfies ��	��=1.
Proof. Since discriminant in Eq. �10� is strictly positive, �	��2

olutions are real. Furthermore, the coefficient of 	0 term in Eq.
10� is strictly negative; thus two �	��2 solutions of Eq. �10� are in
pposite sign. Only �	��2�0 solution is admissible. �

According to the proof above, the only scenario that is possible
s the subfigure on the left in Fig. 3. Let us denote by �̄ the
inimum positive delay at which this scenario occurs, �̄
min����, where ��	��=1 and f i�	�j ,���=0.
Eigenvalues Jii=1. This is the case setting maximum input rates

n the supply network. With Jii=1, the curve ��	� initiates at point

0=1, which is also on the unit circle. The following lemma char-
cterizes the geometric interaction of the curve ��	� and the unit
ircle.

LEMMA 3. For Jii=1, the delayed supply network dynamics is at
est marginally stable for any selection of A and B parameters.

�

�

�C
Un

�
��

C1

Fig. 3 Two possible scenarios fo
�„�… and the unit circle as per Lem
sible as per Lemma 2.

�

�

�E

Uni

�

Fig. 4 Interaction of the curve �

21005-4 / Vol. 131, MARCH 2009
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Moreover, if B−A�1 /2, then there exists no imaginary axis
crossings of the delayed supply network for some �	��2�0 �left
subfigure in Fig. 4). If B−A�1 /2, then the supply network dy-
namics with transportation delay exhibits one imaginary axis
crossing for �	��2�0 (right subfigure in Fig. 4).

Proof. Substituting Jii=1 into Eq. �10� yields

f�	�� = 	�4 + �1 + 2A − 2B�	�2 = 0 �11�

where one �	��2 solution is zero and it always exists for any �, see
also Eq. �8�. It indicates that characteristic equation possesses a
zero pole, s=	�j=0, which makes the supply network dynamics
at best marginally stable for any �.

The second �	��2 solution from Eq. �11� exists �it is positive�
only when B−A�1 /2. �

Remark: Invariant root(s) at the origin. As mentioned above,
when Jii=1 the presence of a zero pole at the origin of C is
independent of delay �. This is an invariant root; however, its
presence may initiate a second pole at the origin �hence double
roots of the characteristic function at s=0� if the first derivative of
the characteristic function with respect to s at s=0 becomes zero.
This corresponds to

�dfi�s,��
ds

	
s=0

= 1 + B�1 − Jii� − A� = 0

from which delay � becomes �=�0= �1+B�1−Jii�� /A. Clearly,
delay �0�0 exists. When �=�0 and Jii=1, characteristic function
possesses two poles at the origin. Since only one root at the origin
is known to be invariant, the second root will cross to C+ causing
instability as � infinitesimally increases from �0.

3.3.3 Stability Assessment. Since ��0�=1 /Jii
1, the curve
��	� never initiates inside the unit circle for 	=0. Consequently,
��	� is guaranteed to intersect the unit circle �since ��	�→0+

�

�D
ircle

)
0

�
�
D2

D1

�

he geometric interaction between
1. Only subfigure on left is admis-

�

�
E

�
E1

cle

)
0

�

it c

(�
�

r t
ma
t cir

�(�
�

„�… and unit circle when Jii=1
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hen 	→� and stability to instability transition will occur. Let
s summarize below the obtained results:

PROPOSITION 1. The asymptotic/marginal stability features of
he supply network are as follows.

Case (i). Asymptotic stability is maintained with �� �0, �̄�
hen 0�Jii�1. When �= �̄, a pair of characteristic roots is on

he imaginary axis at s= �	�j. This is the case when the dynam-
cs becomes a perfect oscillator at frequency 	�.

Case (ii). Marginal stability is maintained with �
�0,min��̄ ,�0�� when Jii=1 and B−A�1 /2. A pair of charac-

eristic roots s= �	�j is on the imaginary axis at �= �̄ or a pair of
ouble roots is at the origin of C �	�=0� at �0= �1+B�1−Jii�� /A.
maller delay determines the stability range on �.
Case (iii). Marginal stability is maintained with �� �0,�0�

hen Jii=1 and B−A�1 /2. A characteristic root may only move
o C+ across the origin at delay �0= �1+B�1−Jii�� /A.

3.4 Discussions on Stability Analysis With Multiple
elays. The analysis presented above and its connection with sup-
ly network dynamics exploit frequency sweeping tools in assess-
ng the stability analysis. Decoupling of delay � and frequency 	
erves beneficial in achieving this. When one considers multiple
elays in supply network dynamics, frequency sweeping ideas can
till be adapted to the context of the problem following similar
ines as covered in Sec. 3.3. However, the decoupling idea may
ot be possible or it needs to be supplemented with different ap-
roaches, see, for instance, Refs. �23,32�, in order to obtain sta-
ility maps of the dynamics. Let us summarize in this subsection
ossible directions one may follow in analyzing stability of the
upply network in presence of multiple delays, �v, v=1, . . . , v̄,
here v̄ is the number of delays �due to the transportation lines,
ecision-making activities, and production lead times�. Inspecting
he structure of Eq. �3�, the general form of the characteristic
quation similar to Eq. �7� is given by

F�s,e−�vs,A,B,ci�,di�� = P0�s,A,B,ci�,di��

+ P1�s,e−�1s, . . . ,e−�v̄s,A,B,ci�,di��

= 0 �12�

here P1�s ,e−�1s , . . . ,e−�v̄s ,A ,B ,ci� ,di�� is a polynomial in s
ith coefficients in terms of e−�vs ,A ,B ,ci� ,di�. Polynomial
0�s ,A ,B ,ci� ,di�� does not carry any delay terms and it has the

argest power of s in Eq. �12�, which is 2n.
Methods that assess stability with respect to small number of

elays v̄�3 are not extendable to cases with large number of
elays v̄�3 due to the increasing complexity of detecting the
tability regions �as pointed out by the NP-hardness �21� character
f the problem�. Extensive research effort in the field is the evi-
ence of this bottleneck �26–29,35,38,42–48�. Nonconservative
ethodologies for two delay cases are found in Refs.

32,38,47,49–52� and numerical algorithms with sufficiently small
pproximation tolerances are available in Refs. �36,53,54�. Except
ew case specific techniques �34,49,51,52�, even the general treat-
ent of three-delay problems is still open. Recently developed
CFS �22� is a new venue that can remove these limitations.

mplementing ACFS, a nontrivial four delay supply network ex-
mple is added to Sec. 5 to motivate future work along these lines.
t is important to note that complications faced in the field due to
elays also reflect to supply network literature, where we only
bserve treatments with a single delay, see Refs. �3,4,9� and ref-
rences therein.

Sensitivity of Bullwhip Effects Against Pure Delays
After establishing the stability, one also needs to guarantee that

ullwhip effects will be avoided within the supply network. For
his, the nonhomogeneous part of Eq. �4� is taken into account as

harmonic oscillator, hi���=hi
0ej��, where � denotes the excita-

0
ion frequency and hi is the constant amplitude of the excitations.
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We are interested how the amplitudes of the ith node in the supply
network varies as a function of � and the disturbance from the i
+1st node, i=1, . . . ,n−1.

This analysis is known as frequency response analysis in con-
trol theory �55�. It is performed in steady state, when the transient
regime of the dynamics fades away and is negligible �thus no
effects of initial conditions�. Since the dynamics is linear, its re-
sponse in steady state to a periodic excitation is known to be in
the following periodic form, �i���=�i

0ej���−�i� with a constant
phase shift �i and a constant amplitude of the output oscillations
�i

0. This yields the amplitude �i
0 of the state �i��� as a function of

excitation frequency � and delay �,

�i
0��,�� =� �bi�i+1

0 �2��B��2 + A2� + hi
0Hi + �hi

0�2

p0��� + 2pc���cos���� − 2ps���sin����
�13�

where

p0��� = �4 + �2�B2�1 + Jii
2� + 2Jii�A − B� + 1� + A2�1 + Jii

2�

pc��� = �2�B − A − B2Jii� − A2Jii

ps��� = ���2B + A�

Hi = 2bi�i+1
0 �A cos��i+1� + B� sin��i+1��

Notice that analyzing bullwhip effects makes sense only if the
dynamics is asymptotically stable for a given delay ��. This cor-
responds to case �i� of Proposition 1. The bullwhip effects are
avoided for this given delay ��, if the following supremum con-
dition holds:

sup
��R,����0,�̄�,0�Jii�1

� �i
0��,���

max��i+1
0 ,hi

0�
	 � 1

If, on the other hand, there exists an excitation frequency �� for
which the above inequality does not hold, then bullwhip effects
will be observed. Amplitudes of oscillations from one node to
another will increase at excitation frequency ��.

Since the numerator of �i
0�� ,�� is independent from delay �, it

is relatively easy to construct some analytical tools to compare the
sensitivity of bullwhip effects with and without delays. For this,
one can neglect the square root sign in Eq. �13� and analyze the
denominator with �=0 �denote by �0� and ��0 �denote by ���.
Since �0=�� when �=0, one can express �� as ��=�0+ �̄,

where �̄ is the change in �0 �delay-free case� when delays are
incorporated,

�̄ = 2pc����cos���� − 1� − 2ps���sin����

If �̄�0, then bullwhip effects are more prone to occur in the

presence of delays. Let us briefly elaborate on �̄�0 condition.
Notice �cos����−1�=−2 sin2��� /2��0. One can rewrite in-

equality �̄�0 as

sin���/2��pc���sin���/2� + ps���cos���/2�� � 0

which can be shown to be valid in some excitation frequency
range�s� for given delay �� and supply network parameters A, B,
and Jii.

5 Case Study
Let us analyze the supply network dynamics in Eq. �6� with

A=0.2, B=0.1, and bi=1. The aim is to calculate maximum
allowable transportation delay �̄ below which the supply network
maintains its asymptotic stability. Since time t is scaled by T �time
constant of inventory dynamics�, delay � in this section represents
the transportation time scaled by T.

5.1 Stability Analysis. For the stability of the supply network

with respect to transportation delay �, we follow the stability
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nalysis technique presented in Sec. 4. We also incorporate uncer-
ainties. Let us assume that A=0.2�0.1. The arising stability
nalysis results are depicted in Fig. 5 in the parameter space of Jii
nd � for different A values. In Fig. 5, the stability regions are
elow the curves depicted. For instance, for Jii=0.6, the maxi-
um allowable transportation delay �̄=3.75 when A=0.3. Notice

lso that for the choice of a fixed delay and A, the stability region
arrows as Jii increases. Furthermore, within the range of Jii, in-
rease in A from 0.1 to 0.2 and from 0.2 to 0.3 narrows down the
tability regions.

In Fig. 6, we investigate the stability regions for the nominal
alue of A, Anom=0.2, when B=0.2�0.1. This figure is a contour
lot of the transportation delay � with respect to Jii and B. The
ontours represent the iso-� locations in the plane of Jii−B. The
ransportation delay � varies from 3.81 to 8.43, and the corre-
ponding � of each contour curve is labeled in the figure.

We conclude from Fig. 6 that larger input rates Jii limit allow-
ble transportation delays. Furthermore, in order to guarantee ro-

ig. 5 Stability boundaries of the supply network for various A
alues, where B=0.1. The stability region is the area below the
urves. Input rate: 0<Jii<1.

Fig. 6 Stability boundary of the s
contours in the plane of Jii versus B
tour curves are labeled with their

0<Jii<1.
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bustly stable supply network independent of delay effects, delay
should be less than 3.81, which is 381% of the relaxation time T.

5.2 Bullwhip Effects. Once the stability of the supply net-
work is guaranteed, bullwhip effects can be analyzed. We will
adhere to the stability analysis performed in Sec. 5.1. In order to
keep the presentation simple, external disturbances due to hi

0 are
taken to be zero, and quasinodes are assumed to exhibit harmonic
oscillations.

In the sequel, we select ��=0.5 �50% of T�, which guarantees
the stability of the supply network, see Fig. 5. Then, for 0�Jii
�1 and B=0.1, we analyze bullwhip effects for three different A
values, A=0.1, A=0.2, and A=0.3. For each A and sufficiently
broad range of �, we detect the amplitude of the frequency re-
sponse function ��i

0�� ,����. Next, we obtain the contours separat-
ing Jii versus � plane into two regions: one corresponding to
��i

0�� ,�����1 �white regions� and the other corresponding to
��i

0�� ,�����1 �shaded regions� in Fig. 7. When A=0.1, A=0.2,

ly network represented with iso-�
r the nominal value Anom=0.2. Con-
rresponding � values. Input rate:

Fig. 7 Contour plot of ��i
0
„� ,��

…�=1 with respect to 0.01<Jii
<0.99 and to A when B=0.1. Delay is ��=0.5. Bullwhip effects
occur in regions R1, R1 R2, and R1 R2 R3 for A=0.1, A=0.2,
and A=0.3, respectively.
upp
fo
co
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nd A=0.3, the supply network exhibits bullwhip effects in the
haded regions R1, R1�R2, and R1�R2�R3, respectively. In or-
er to maintain a clear representation, the frequency range is
hortened. For instance, we do not observe bullwhip effects for
�0.35 and for any Jii when A=0.3.
What is critical in this analysis is that bullwhip effects cannot

e avoided for any input rate Jii under these supply network pa-
ameter settings, despite the fact that delay �� is relatively smaller
han the maximum delay that can be tolerated against losing sta-
ility �Fig. 5�. In this sense, bullwhip effect becomes the dominant
henomenon, limiting the functionality of the supply network. On
he other hand, the network for these settings is not prone to
ullwhip effects when excitation frequency is larger, ��0.35.
hese observations apparently point out the trade-off between the
arameters A and delay � and the particular way these two pa-
ameters affect both asymptotic stability and bullwhip
henomenon.

We conclude this study by offering another bullwhip analysis in
ig. 8 where the only change is in the transportation delay,
�=3.0. This delay still maintains asymptotic stability in the sup-
ly network; however, it is much closer to boundaries separating
tability-instability regions in Fig. 5. Clearly, if one compares
igs. 7 and 8, supply network becomes more prone to exhibit
ullwhip effects with transportation delay ��=3.0.

ig. 8 Contour plot of ��i
0
„� ,��

…�=1 with respect to 0.01<Jii
0.99 and to A when B=0.1. Delay is ��=3. Bullwhip effects
ccur in regions R1, R1 R2, and R1 R2 R3 for A=0.1, A=0.2,
nd A=0.3, respectively.

ig. 9 Stability map of the supply network with four delays.
he stable regions are entrapped by the axes and the labeled

oundaries.
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5.3 Supply Network With Four Delays. Let us analyze the
stability of the equilibrium of a supply network with two suppliers
and two inventories. This corresponds to i=1,2 in Eq. �1�. The
features of the equilibrium dynamics is chosen as A=B=0.1. No-
tice from Eq. �1� that rows of input matrix C and columns of
output matrix D sum to 1. We choose these matrices as

C = �0.36 0.64

0.73 0.27
, D = �0.45 0.65

0.55 0.35


Four different delays, v̄=4, are associated with each entry of ma-
trix D and with these delays characteristic equation following
from Eq. �5� is expressed as

F�s,�1, . . . ,�4� = det��s2 0

0 s2 
+ s�0.964 + 0.045e−�1s 0.065e−�2s − 0.064

0.055e−�3s − 0.073 0.973 + 0.035e−�4s 
+ �0.045e−�1s − 0.036 0.065e−�2s − 0.064

0.055e−�3s − 0.073 0.035e−�4s − 0.027


= 0

which is free of all the assumptions that lead to Eqs. �4� and �5�.
The above equation after expanding the determinant becomes very
complicated for analyzing stability,

s4 + �0.045e−�1s + 0.035e−�4s + 1.937�s3 + 10−2��8.8785e−�1s

+ 0.4745e−�2s + 0.352e−�3s + 6.874e−�4s − 0.3575e−��2+�3�s

+ 0.1575e−��1+�4�s + 87.03�s2 + �4.257e−�1s + 0.949e−�2s

+ 0.704e−�3s + 3.248e−�4s + 0.315e−��1+�4�s − 0.715e−��2+�3�s

− 7.04�s − 0.1215e−�1s + 0.4745e−�2s + 0.352e−�3s

− 0.126e−�4s + 0.1575e−��1+�4�s − 0.3575e−��2+�3�s − 0.37� = 0

The characteristic equation free of delays has four stable roots at
s1=s2=−1 and s3,4=−0.0085�0.004213j and we wish to reveal
stability maps that display how much of delays the network can
accommodate before losing stability. In order to offer a clear rep-
resentation of the stability maps, we present them on the plane of
�1 versus �2 while we independently choose �3 and �4. For three
different numerical choices of ��3 ,�4� pairs, stability map of the
supply network is obtained using ACFS �22� and it is given in Fig.
9. On this map, the closed region entrapped by �1=0 and �2=0
and the respective stability boundary labeled with ��3 ,�4� is the
asymptotically stable operation region of the supply network on
the plane of �1 versus �2. Note that each boundary in Fig. 9 can
be obtained in less than 1 s on a standard Pentium 4 processor PC
with 3.0 GHz CPU speed and 2 Gbyte RAM.

We finalize this case study with a simulation performed in MAT-

LAB. From Fig. 9, �3=2.23 and �4=3.79 are taken and a stable
operation point is chosen as �1=1.13 and �2=3.95. For this com-
bination of four delays, variation in inventories and variation in
production rates are simulated with respect to scaled time �Fig.
10�. The variations exhibit asymptotic stability, as expected. Fur-
thermore, variation in inventories initializes at negative values,
which intuitively requires positive variation in production rates.
This is exactly what is observed in Fig. 10 where decrease in
inventories is compensated by increase in production rates.

6 Conclusion
Transportation time of products in supply networks is a source

of delay, which is incorporated in a delay-free mathematical
model for assessing stability and analyzing bullwhip effects with
respect to this delay and parameters defining the supply network.
Analytical tools are developed to achieve these analysis and to
interpret various behavioral characteristics of supply networks in-

tuitively known and empirically observed in the literature. Case
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tudies are provided to demonstrate the end results of the analyti-
al approaches developed. The ultimate goal is to offer supply
etwork managers thorough understanding of transportation de-
ays and new tools to aid in their decision making. Future work
long these lines is the cost optimization and investigation of
ore elaborate models with larger number of delays representing

ecision making, lead times, and multiple transportation lines.
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