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Abstract. Based on fluid-dynamic and many-particle (car-following) simula-
tions of traffic flows in (urban) networks, we study the problem of coordinat-
ing incompatible traffic flows at intersections. Inspired by the observation of
self-organized oscillations of pedestrian flows at bottlenecks, we propose a self-
organization approach to traffic light control. The problem can be treated as a
multi-agent problem with interactions between vehicles and traffic lights. Specif-
ically, our approach assumes a priority-based control of traffic lights by the ve-
hicle flows themselves, taking into account short-sighted anticipation of vehicle
flows and platoons. The considered local interactions lead to emergent coordina-
tion patterns such as ‘green waves’ and achieve an efficient, decentralized traffic
light control. While the proposed self-control adapts flexibly to local flow con-
ditions and often leads to non-cyclical switching patterns with changing service
sequences of different traffic flows, an almost periodic service may evolve under
certain conditions and suggests the existence of a spontaneous synchronization of
traffic lights despite the varying delays due to variable vehicle queues and travel
times. The self-organized traffic light control is based on an optimization and a
stabilization rule, each of which performs poorly at high utilizations of the road
network, while their proper combination reaches a superior performance. The
result is a considerable reduction not only in the average travel times, but also of
their variation. Similar control approaches could be applied to the coordination
of logistic and production processes.
Keywords: flow control, traffic and crowd dynamics, traffic models, self-driven
particles
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1. Introduction

Traffic systems are a prominent example of non-equilibrium systems and have been
studied extensively in the field of statistical physics [1]–[3]. Much attention was devoted
to the study of self-organized phenomena in driven many-particle systems [4] such as
pedestrian flows [5, 7] or traffic flows on highways [8, 9]. In order to explain phenomena
like the emergence of traffic jams [10, 11] or stop-and-go waves [12]–[14], a huge variety
of different traffic flow models have been proposed, e.g. follow-the-leader models [15] or
fluid-dynamic traffic models in both discrete [16] and continuous [17, 18] space. More
recently, a research focus was put on network traffic, which required us to extend one-
dimensional traffic models in order to cope with situations, where traffic flows merge
or intersect [19, 20, 7], [21]–[23]. These models can explain how jam fronts propagate
backwards over network nodes [24, 25], which might eventually result in cascading
breakdowns of network flows [26]–[28].

One grand challenge in this connection is the optimization of traffic lights in urban
road networks [23], especially the coordination of vehicle flows and traffic lights. A typical
goal is to minimize travel times, to find optimal cycle times [29, 30] and to study the
corresponding spatio-temporal patterns of traffic flow [31]–[33]. It is agreed, however,
that a further improvement of the traffic flow requires us to apply more flexible strategies
than fixed-time controls [34]–[37]. Gershenson [38], for example, showed for a regular
network with periodic boundary conditions that his control strategy synchronizes traffic
lights even without explicit communication between them. Lämmer et al [39] proposed
to represent the traffic lights by locally coupled phase oscillators, whose frequencies adapt
to the minimum cycle of all nodes in the network. Further algorithms perform parameter
adaptations by means of neural networks [40, 41], genetic reinforcement learning [42], fuzzy
logic [43, 44] or swarm algorithms [45].

The optimization of intersecting network flows has also been studied in the domain
of production [46]–[49] and control theory [50]–[53]. De Schutter and de Moor [54, 55]
proposed a solution approach for finding optimal switching schedules for an isolated
intersection with constant arrival rates. For networks of more than one node, Lefeber and
Rooda [56] could derive a state-feedback controller from a given desired global network
behavior. Besides optimality, control theorists particularly addressed the issue of the
stability of decentralized control strategies [57, 58, 48]. Whereas so-called clearing policies
(see appendix A.1), for example, stabilize single nodes in isolation, they might cause
instabilities in networks with bidirectional flows [59]–[62]. Control strategies based on
periodic switching sequences, e.g. the classical fixed-time traffic light control, have been
shown to be both stable and controllable under certain conditions [63, 50].

In this paper, we propose a decentralized control algorithm, which is based on short-
term traffic forecasts [64] and enables coordination among neighboring traffic lights.
Rather than optimizing globally for assumed flow conditions that are never met exactly,
we look for a heuristics that most of the time comes close to optimal operation, given the
actual traffic situation. Assuming that it would be possible to adjust traffic regulations
accordingly, we will drop the condition of periodic operation to allow for more flexible
adjustment to varying traffic flows.

The fact that varying traffic flows influence the respective traffic lights ahead, which
in turn influence the traffic flows, makes it impossible to predict the evolution of the
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system over longer time horizons. This makes large-scale coordination among traffic
lights difficult. It is known, however, that local nonlinear interactions can, under certain
conditions, lead to system-wide spatio-temporal patterns of motion [65]. Therefore,
our control concept pursues a local self-organization approach. The particular scientific
challenge is that such a decentralized ‘self-control’ must be able to cope with (1) real-time
optimization, (2) feedback loops due to the mutual interaction between the traffic lights
via the traffic flows and (3) very limited prognosis horizons.

Our paper is organized as follows. In the next section, we introduce a fluid-dynamic
model for the traffic flow in urban road networks. This model allows us to anticipate the
effects of switching traffic lights (see section 3). In section 4, we explain our concept of the
self-control of traffic lights. The underlying principle is inspired by the self-organization of
opposite pedestrian flows, which is driven by the pressure differences between the waiting
crowds. We generalize this observation in section 4.3 to define priorities of arriving traffic
flows. In sections 4.4 and 4.5, the prioritization strategy is supplemented by a stabilization
strategy. Simulation studies are presented in section 5 and demonstrate the superior
performance of our decentralized concept of self-control.

2. Network flow model

An urban road network can be composed of links (road sections of homogeneous
capacity) and nodes (intersections, merges and diverges) defining their connection. The
following sections summarize a fluid-dynamic model describing the traffic dynamics on
the constituents of a road network.

2.1. Traffic dynamics on road sections resulting from the continuity equation

Let us consider a homogeneous road section i with constant, i.e. time-invariant, length Li,
speed limit Vi and saturation flow Qmax

i . The traffic dynamics on the road section can be

characterized by the arrival rate Qarr
i (t) ≤ Qmax

i and the departure rate Qdep
i (t) ≤ Qmax

i .
These quantities represent the numbers of vehicles per unit time entering or leaving the
road section over all its lanes.

The flow of traffic along an urban road section (in contrast to freeway sections [12]) is
sufficiently well represented by Lighthill and Whitham’s fluid-dynamic traffic model [14].
It describes the spatio-temporal dynamics of congestion fronts based on the continuity
equation for vehicle conservation, plus a flow density relationship known as a ‘fundamental
diagram’. If we neglect net effects of overtaking and approximate the fundamental
diagram by a triangular shape, this implies two distinct characteristic speeds: while
perturbations of free traffic flow propagate downstream at the speed Vi, in congested traffic
the downstream jam front and perturbations propagate upstream with a characteristic
speed of about −15 km h−1 [4]. These fundamental relations also allow us to derive
explicit expressions for the motion of the upstream jam front, where vehicles brake and
enter the congested area of the road section, as well as for the related travel times [21, 18].

An integration over space results in an effective queuing-theoretical traffic model based
on coupled delay-differential equations [23]. It can be summarized as follows: in free traffic,
ideally, the cumulated number N exp

i (t) of vehicles expected to reach the downstream end
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of road section i until time t is given by

N exp
i (t) =

∫ t

−∞
Qarr

i (t′ − Li/Vi) dt′, (1)

where the time shift Li/Vi corresponds to the travel time to pass link i in free traffic. In
the case of congestion, however, the number of vehicles that have actually left the road
section at its downstream end is given by the integral of the departure rate:

Ndep
i (t) =

∫ t

−∞
Qdep

i (t′) dt′ ≤ N exp
i (t). (2)

Thus, the difference between N exp
i (t) and Ndep

i (t) directly corresponds to the number of
delayed vehicles, which will be referred to as the queue length ni(t). Consequently, the
total waiting time wi(t) of all vehicles on road section i until time t increases at the rate

dwi/dt = ni(t) = N exp
i (t) − Ndep

i (t). (3)

It is important to note that, even though ni(t) does not explicitly account for the
spatial location of congestion on link i, it fully captures the corresponding inflow–outflow
relations, the time to resolve a queue, as well as the associated waiting times. The
consistency with other and more complex traffic flow models is shown in [23].

2.2. Kirchhoff’s law for the traffic dynamics at nodes

Each node in a road network connects a number of incoming road sections denoted by
the index i to a number of outgoing links denoted by j. Kirchhoff’s law regarding the
conservation of flows at nodes requires that the flow arriving at an outgoing link j equals
the sum of the fractions αij(t) of the departure flows Qdep

i (t) from the incoming links i,
i.e.

Qarr
j (t) =

∑
i

αij(t) Qdep
i (t) for all j and t. (4)

The turning fractions αij(t) ≥ 0 with
∑

j αij = 1 are normalized and may be
time-dependent, as route choice and travel activities can change in the course of a
day [66, 4, 67, 68]. By incorporating limited arrival flows (Qarr

j (t) ≤ Qmax
j ), it becomes

obvious that a lack of arrival capacity on a downstream link limits the departure flow on
the upstream links, which may eventually cause spill-back effects [69]. A discussion of
concrete specifications of diverges and merges is provided in [21, 23]. For the dynamics of
shock fronts propagating through such network nodes, see [70, 71].

When a traffic flow enters or crosses another one, i.e. at merging or intersection nodes,
the competing traffic flows tend to obstruct each other, which often leads to an inefficient
usage of intersection capacities [72, 7]. Traffic lights can serve to coordinate incompatible
traffic flows and to increase the overall performance. For traffic flows served by a green
light, we assume in the following that the outflow from a queue is only limited by the
saturation flow Qmax

i . That is, throughout this paper, outflows will not be obstructed by
other flows or by spill-backs from downstream road sections.

A general approach to model the switching of traffic lights is to regulate the outflow of
an incoming road section i with a ‘permeability’ pre-factor γi(t), which alternates between
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0 and 1, corresponding to a red and green traffic light, respectively [23]. Three different
regimes can be distinguished: (i) if the traffic light is red, the outflow is zero; (ii) when the
traffic light has switched to green, the vehicle queue discharges at a more or less constant
rate, the saturation flow Qmax

i [73]; (iii) if the traffic light remains green after the queue
has dissolved, vehicles leave link i at the same rate Qexp

i (t) = Qarr
i (t−Li/Vi) at which they

enter it, delayed by the free travel time Li/Vi. Together with equation (3), one obtains
an ordinary differential equation for the temporal evolution of the queue length ni(t):

dni

dt
=

⎧⎪⎨
⎪⎩

Qexp
i (t) if γi(t) = 0

Qexp
i (t) − Qmax

i if γi(t) = 1 and ni(t) > 0

0 if γi(t) = 1 and ni(t) = 0.

(5)

The above model allows us to characterize the queuing process at a signalized road section
as a nonlinear hybrid dynamical system [50], i.e. a system of equations containing both
continuous and discrete state variables. The transition from regime (ii) to regime (iii),
i.e. the transition from congested to free traffic is a result of the particular arrival flow
and cannot directly be controlled by the traffic light. Thus, a complete formulation of
the hybrid dynamical system requires us to anticipate the time point at which a queue
will be cleared [64]. This, as well as the switching losses due to reaction times and finite
accelerations, will be addressed in the following section.

3. Anticipation of traffic flows and platoons

For a flexible traffic light control to be efficient, it is essential to anticipate the vehicle
flows as well as possible (see appendix A.3). In [64], we have proposed a framework
to predict the effects of starting, continuing or terminating service processes on future
waiting times. The main results are briefly summarized in the following and serve as the
basis for deriving optimal switching rules in section 4.3.

Note, however, that there are fundamental limits to the prediction of traffic flows
(see appendix). Already very small networks with very simple switching rules can
produce a complex and potentially chaotic traffic dynamics (see appendix A.2). Moreover,
coordination problems between traffic flows and their service may cause an inefficient usage
of intersection capacities and, thereby, spill-back effects and related dynamic instabilities
(see figures 1 and 2 and appendix A.1). These can sometimes be quite unexpected and
imply that plausible optimization attempts may fail due to nonlinear feedback effects.
Details are discussed in the appendix.

3.1. Service process and set-up times

The safe operation of traffic lights requires that, before switching to green for the traffic
flow of i, all other incompatible traffic flows have been stopped and all corresponding
vehicles have already left the conflict area. This will be considered in our model by
introducing set-up times: if some traffic flow i is selected for service, its traffic light does
not switch to green before the corresponding set-up (or intergreen) time τ 0

i has elapsed [74].
The value of τ 0

i has to be chosen according to safety considerations and usually lies in the
range between 3 and 8 s. Please note that τ 0

i also includes the amber time period, which
takes into account reaction delays and delays by finite acceleration. Therefore, the set-up
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Figure 1. (a) Isolated intersection with two incompatible traffic streams A
and B. In this case, a suitable clearing policy is both optimal and stable (see
appendix A.1). (b) Combination of two intersections of the kind displayed in (a),
forming a non-acyclic road network (see appendix A.1). It is interesting that,
even when each of the intersections behaves stably in isolation, the road network
might behave dynamically unstable under identical inflow conditions (see figure 2
and [59]).

Figure 2. Time-dependent queue lengths for the non-acyclic road network shown
in figure 1(b), assuming a clearing policy that behaves optimally at the isolated
intersection illustrated in figure 1(a). The queue lengths diverge due to dynamic
instability. (For an explanation of the clearing policy see appendix A.1.) The
reason for this instability lies in the inefficient usage of service capacities during
the time periods from 20 to 45 s, from 70 to 130 s, and so on. During this time,
the traffic lights extend the green time for streets 1 and 3 where the vehicle queues
have already been cleared, while the other streets are ‘being starved of input’,
using the words of Kumar and Seidman [59].

time τ 0
i reflects all time losses associated with the start of service for vehicles on link i. As

depicted in figure 3(c), a service process can be divided into three successive states: the
set-up, the clearing of the queue and the green time extension. The traffic light is green
only in the latter two states.
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Figure 3. (a) Trajectories and (b) cumulated number of vehicles on a road
section i, and (c) different states of the service process. The service process
starts early enough to serve a platoon of five vehicles in a green-wave manner,
i.e. without stopping the vehicles. The precise timing results from a short-
term anticipation [64] based on the time series N exp

i (t) and Ndep
i (t) (i.e. the

cumulated number of vehicles that could have reached the stop-line in free
traffic as compared to the number that actually have left the road section, see
equations (1) and (2)). Whereas the current waiting time wi(t) grows with the
number of vehicles ni(t) being delayed (see equation (3)), the expected future
waiting time ŵi(t) grows with the expected number of vehicles n̂i(t) to be served
in the subsequent ‘clearing’ state (see equations (8) and (9)). The value of n̂i(t)
as well as the required green time ĝi(t) for clearing the queue are determined by
equations (6) and (7). A platoon is served in a green-wave manner, if the start
of the service process is initiated by the platoon-related jump in n̂i(t) or, what is
more illustrative, by the sudden increase of the effective range (see text).

3.2. Green time required to clear a queue

For the flexible control of traffic lights it is of fundamental importance to anticipate the
amount of green time ĝi(t) required for clearing the queue in road section i, given the
service starts or is being continued at the current time point t. Obviously, ĝi(t) does not
only depend on the current queue length ni(t), but also on the number of vehicles joining
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the queue during the remaining set-up time τi(t) and while the queue is being cleared.
The queue of delayed vehicles has fully dissolved at the time point t + τi(t) + ĝi(t), which
is defined by the requirement that the number of vehicles having left the road section
by that time is equal to the number of vehicles that have reached the stop-line. This
corresponds to the left- and right-hand side, respectively, of the following equation:

Ndep
i (t) + ĝi(t) Qmax

i = N exp
i (t + τi(t) + ĝi(t)). (6)

The value of ĝi(t) shall be the largest possible solution of equation (6), which can be easily
obtained with standard bisection methods [75]. The second term in equation (6) represents
the number of vehicles that are expected to leave the road section at the saturation flow
rate Qmax

i , and shall be denoted by n̂i(t), i.e.

n̂i(t) = ĝi(t) Qmax
i . (7)

A detailed derivation and discussion of the dynamics of ĝi(t) and n̂i(t) in different
dynamical regimes is provided in [64]. n̂i(t) captures all those vehicles

• already waiting in the queue,

• joining the queue during set-up or clearing and

• arriving as a platoon immediately after the queue is cleared.

It particularly considers jumps to a higher value, when a platoon could be served in a
green-wave manner, i.e. without stopping. The magnitude of the jump is equal to the size
of the platoon. Before the platoon arrives at the stop-line, the formula reserves exactly
as much time as needed to perform the set-up and to clear the queue of waiting vehicles.
Thus, the above anticipation model provides us with a mechanism that establishes green
waves. In order to visualize the underlying principle, figure 3(a) plots the so-called effective
anticipation range, which includes the n̂i(t) vehicles.

Note that, when the effective range extends (τi(t)+ ĝi(t))Vi meters from the stop-line,
all vehicles within that range will reach the stop-line before the queue is being cleared at
time point t + τi(t) + ĝi(t). These vehicles will thus be served within the ‘clearing’ state
of a subsequent service process.

3.3. Waiting time anticipation

Obviously, we would like to be able to decide whether to continue a service process or
start another one is more profitable in terms of saving waiting time. Therefore, the above
anticipation concept shall now be used to forecast the total waiting time ŵi(t) of all
vehicles on road section i up to the end of the subsequent ‘clearing’ state (see figure 3(b)).
According to [64], we have

dŵi

dt
=

{
n̂i(t) if i is not served

0 during the entire service process.
(8)

That is, any delay dt in the start of service will cause an additional delay dt for each
of the expected vehicles. Interestingly, ŵi(t) does not change anymore during the service
process, because the corresponding value has already been anticipated before. However, it
will change again as soon as the service process is terminated. At the same point in time,
the anticipated waiting time ŵi(t) will also increase by the additional amount Δŵi(t)
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due to the fact that the next green time cannot start before performing a new set-up,
which takes a time period τ 0

i . This additional set-up waiting time is given by

Δŵi(t) = Qmax
i

∫ τ0
i

τi(t)

ĝi(t, τ
′) dτ ′, (9)

where ĝi(t, τ) corresponds to the solution of equation (6), given a remaining set-up time
of τ ′. The above equations (8) and (9) allow one to anticipate the costs of delaying or
terminating a service process in terms of expected future waiting times. To underline the
particular importance of this result, we would like to point out the direct relation between
ni(t) and n̂i(t): while ni(t) is the growth rate of the current waiting time wi(t) according
to equation (3), n̂i(t) is the growth rate of the expected future waiting time ŵi(t) for a
traffic flow i that is not being served. This fundamental similarity allows us to easily
transfer conventional control schemes, which have originally been developed to operate on
ni(t), to the variables of our anticipation model.

4. Conventional and self-organized traffic light control

4.1. The classical control approach and its limitations

The optimal control of switched network flows is known to be an NP-hard problem [76],
which means that the time required to find an optimal solution grows faster than
polynomially with the network size (number of nodes). This NP-hardness has two
major implications: first, traffic light controls for road networks are usually optimized
off-line for certain standard situations (such as the morning or afternoon rush hours,
sports events, evening traffic, weekends, etc), and applied under the corresponding traffic
conditions. Second, today’s control approaches are predominantly centralized and based
on the application of pre-calculated periodic schedules, some parameters of which may
be adaptively adjusted (for a discussion of the related traffic engineering literature
see [77, 78]). That is, coordination is reached by applying a common cycle time to all
intersections or multiples of a basic frequency [73]. This frequency is normally set by the
most serious bottleneck. For capacity reasons (to minimize inefficiencies due to switching
times), the frequency is reduced at high traffic volumes, but it is limited by a maximum
admissible cycle time. Apart from the cycle time, the order and relative duration of green
phases (the ‘split’) and the time shifts between neighboring traffic lights (‘offsets’) are
optimized for assumed boundary conditions (inflow and outflow). The resulting program
usually serves each traffic flow once during the cycle time and it is repeated periodically.
So-called ‘green waves’ are implemented by suitable adjustment of green phases and time
shifts. They usually prioritize a unidirectional main flow (e.g. in- or out-bound rush-hour
traffic in ‘arterials’) [79].

Some obvious disadvantages of this classical control approach are:

(i) In order to cope with variations of the inflow, green times are often longer than
needed to serve the average number of arriving vehicles (otherwise excessive waiting
times may occur due to multiple stops in front of the same red light). This causes
unnecessarily long waiting times for incompatible flow directions.

(ii) At intersections with small utilization, the cycle time is typically much longer than
required (or the cycle is uncoordinated with the intersection constituting the major
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bottleneck). Moreover, traffic lights tend to cause avoidable delays during times of
light traffic (e.g. at night).

(iii) A coordination through ‘green waves’ is applicable to one traffic corridor and flow
direction only, while they tend to obstruct opposite, crossing and merging flows.

(iv) Due to the considerable variation of traffic flows and turning fractions from one minute
to another, the traffic light schedule is optimized for an average situation which is
never met exactly, while it is not optimal for the actual traffic situation.

4.2. Real-time heuristics based on a self-organized prioritization strategy

To overcome the previously mentioned disadvantages, we propose to perform a heuristic
on-line optimization that flexibly adapts to the actual traffic situation at each time and
place. If this heuristic reaches, on average, say 95% of the performance of the theoretically
optimal solution, it is expected to be superior to the pre-determined 100% best solution
for an average traffic situation that never occurs exactly. Moreover, finding the one 100%
best traffic light control for a given time-dependent situation is numerically so demanding
that it requires off-line optimization, while solutions reaching, say, 95% of the optimal
performance can be determined in real time. As there are typically several alternative
solutions of high, but not optimal, performance it is also possible to select a solution that
is particularly well adjusted to the local traffic conditions.

In the following, we will specify a heuristics for a decentralized, real-time traffic light
control. In order to reach a superior performance as compared to a simple, cyclical
fixed-time control (see section 5), our self-organized prioritization approach combines an
optimizing strategy (see section 4.3) with a stabilizing one (see section 4.4). Our concept
goes beyond adaptive traffic light controls based on simple feedback between the traffic
situation and the traffic control. It has the characteristic features of self-organized systems:

(i) openness and autonomy,

(ii) the lack of a central plan or hierarchical control,

(iii) complexity, i.e. non-stationary and typically even non-periodic dynamics due to
nonlinear interactions between varying interaction partners and

(iv) no distinction between controlling and controlled elements (here: traffic lights control
vehicles, and these influence the traffic lights).

The phenomena observed (such as the emergence of green waves, and others)
spontaneously result from the interactions in the system, and discontinuous transitions are
expected to take place among the various occurring operation regimes (see section 5.1).
This is fundamentally different from the classical ‘adaptive control’ concept, where a clear
distinction is made between controlled and control elements, and where control parameters
are eventually adapted to changing (e.g. exponentially averaged) traffic conditions.

Our control concept is inspired by the observation that pedestrian counter-flows at
bottlenecks show a self-organized oscillation of their passing direction (see figure 4), as
if the pedestrians were controlled by traffic lights [5, 80, 7]. In pedestrian flows, the self-
organized oscillations result from pressure differences between the waiting crowds on both
sides of the bottleneck. Pressure builds up on the side where more and more pedestrians
have to wait, while it is reduced on the side where pedestrians manage to pass the

doi:10.1088/1742-5468/2008/04/P04019 11

http://dx.doi.org/10.1088/1742-5468/2008/04/P04019


J.S
tat.M

ech.
(2008)

P
04019

Self-control of traffic lights and vehicle flows in urban road networks

Figure 4. Pedestrians flows at a narrow bottleneck behave almost as if they were
controlled by traffic lights (after Helbing and Molnár [5]).

bottleneck. The passing direction changes when the pressure on one side exceeds the
pressure on the other side by a sufficient amount.

Intersections may also be viewed as bottlenecks, but with more than two flows
competing for the available service capacity. Therefore, we had the idea to transfer
the above-described self-organizing principle to urban vehicular traffic, although the
analogy is certainly limited. For example, we find an oscillatory queue formation process
behind the intersection bottleneck, but in contrast to pushy pedestrians with frictional
interactions [6], we do not observe arching and clogging effects.

4.3. Optimization strategy

In our network traffic flow model, we define ‘pressures’ by dynamic priority indices πi(t)
such that the traffic lights of an intersection give a green light to the traffic flow i with
highest priority. For the mathematical formulation of the dynamic prioritization rule, let
us store the argument i in a decision variable σ(t) as follows:

σ(t) = arg maxi πi(t). (10)

Priority-based scheduling has been studied in the context of queuing theory [49], [81]–
[87]. It has been stated that ‘there are no undiscovered priority index sequencing rules for
minimizing total delay costs’ [82]. However, the considered prioritization strategies were
restricted to functions of the current queue length, i.e. to the number of vehicles that have
already been stopped [81, 88]. In contrast, our anticipation model (see section 3) allows
one to predict future arrivals and to generalize these strategies to serving platoons without
any previous stops, i.e. in a ‘green-wave’ manner. For simplicity, we will assume in the
following that route choice is non-adaptive (i.e. the turning fractions αij(t) are known)
and also that all traffic flows at the intersections are conflicting (i.e. only one traffic flow
can be served at a time).

Our goal is to derive a formula for the priority index πi such that switching rule (10)
minimizes the total waiting time. However, the optimization horizon is limited to those
vehicles, whose future waiting time directly depends on the current state of the traffic
lights, i.e. the expected n̂i vehicles captured within the effective range (see figure 3(a)).
Later arriving vehicles are neglected as long as they are beyond the anticipation horizon,
but they are taken into account by the dynamic re-optimization early enough to serve
them by a green wave if this is possible.
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Figure 5. (a) Convergence of the trajectories (n̂1, n̂2) to the optimal limit cycle
at an intersection with two identical traffic flows with constant inflow rate q, see
(b). (c) Periodic time series of the priority indices π1 and π2 associated with the
optimal cycle. (① means clearing street 1, ② set-up for street 2, ③ clearing
street 2 and ④ set-up for street 1).

In case of no further arrivals, Rothkopf and Smith [82] showed that the optimal order
of serving traffic flows is unique and can be determined by comparing priorities among
pairs of competing traffic flows. This allows us to derive the optimal specification of the
priority index πi by studying an intersection of only two competing traffic flows 1 and 2,
as depicted in figure 5(b). For the current time point t, we assume the remaining set-up
times τ1 and τ2, the anticipated number of vehicles n̂1 and n̂2, and the required green
times ĝ1 and ĝ2 to be given. We assume that, initially, traffic flow 1 is being selected for
service, i.e. σ = 1. In this scenario, the controller has two options:

(i) to finish serving flow 1 before switching to flow 2 or

(ii) to switch to flow 2 immediately, at the cost of an extra set-up for switching back to
flow 1 later on.

The optimal control decision is derived by calculating the total increase in the
anticipated waiting time for each option. Following the first option requires continuing to
serve flow 1 for τ1 + ĝ1 seconds. According to equation (8), the anticipated waiting time
of traffic flow 2 grows at the rate n̂2, while it remains constant for traffic flow 1 under
service. Since it also does not change after queue 1 has been cleared and while flow 2 is
being served, the total increase of the anticipated waiting time associated with the first
option would be

(τ1 + ĝ1) n̂2. (11)

When selecting the second option, according to equation (9) the termination of the
service of traffic flow 1 causes the anticipated waiting time to increase by the amount
Δŵ1, which reflects the extra waiting time associated with the set-up for switching back
later. While serving traffic flow 2 for τ2 + ĝ2 seconds, the anticipated waiting time grows
further at the rate n̂1. Altogether, its total increase would be

Δŵ1 + (τ2 + ĝ2) n̂1. (12)
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Thus, it is optimal to continue serving traffic flow 1 as compared to switching to
flow 2 if

(τ1 + ĝ1) n̂2 < Δŵ1 + (τ2 + ĝ2) n̂1. (13)

The above optimality criterion allows us to define priority indices π1 and π2 by separating
the corresponding variables. For this, we rewrite equation (13) in the following way:

π1 :=
n̂1

τ1 + ĝ1

>
n̂2

Δŵ1/n̂1 + τ2 + ĝ2

=: π2. (14)

Each side of this inequality defines a priority index πi. With this definition, the priority
π1 for traffic flow 1 is a function of its own variables only. Interestingly, π2 has the same
dependence on its own variables, but it additionally depends on the term Δŵ1/n̂1. Before
we can derive a general formula for the priority πi of any traffic flow i, we must first clarify
the role of this extra term. In general, the expression Δŵσ/n̂σ reflects the penalty for
terminating the current service process, where σ stands for the traffic flow being served.
As follows from equation (9), the value of Δŵσ/n̂σ ranges from 0 to τ 0

σ and thus represents
the additional waiting time Δŵσ due to the extra set-up for switching back, averaged over
all corresponding vehicles n̂σ. Since the penalty for switching from σ to i applies only to
those traffic flows i �= σ not being served, we can introduce the general penalty term τpen

i,σ

as follows:

τpen
i,σ =

{
Δŵσ/n̂σ if i �= σ

0 if i = σ.
(15)

With this notation we can introduce the general definition of the priority index πi as

πi =
n̂i

τpen
i,σ + τi + ĝi

. (16)

This is fully compatible with the optimality criterion (14). To interpret the result,
the priority index πi relates to the anticipated average service rate, i.e. the anticipated
number n̂i of vehicles expected to be served during the time period τi + ĝi. In contrast
to conventional priority specifications derived from the so-called μc rule [81, 83, 88, 89],
specification (16) is novel in two fundamental aspects: first, its dependence on the
predicted variables n̂i and ĝi allows one to anticipate future arrivals (see section 3). Second,
it takes into account both first- and second-order switching losses, i.e. the set-up times
for switching to another traffic flow as well as for switching back, represented by τi and
τpen
i,σ , respectively.

Instead of clearing existing queues in the most efficient way, our anticipative
prioritization strategy aims at minimizing waiting times. This prevents queues to form
and causes green waves to emerge automatically, whenever this saves overall waiting time
at the intersection. The underlying mechanism relates to the fact that the values of n̂i

and ĝi jump to a higher value as soon as the first vehicle of a platoon enters the dynamic
anticipation horizon (see section 3).

Whether a platoon is being served by a green wave or not finally depends, of
course, on the overall traffic situation at the local intersection. While our previous
considerations applied to vehicle queues of given length, the same prioritization rule
shows a fast exponential convergence to the optimal traffic light cycle also for continuous
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inflows (see figure 5). However, a local optimization of each single intersection must
not necessarily imply global optimality for the entire network [56], [90]–[92], as dynamic
instabilities cannot be excluded (see appendix A.1). Thus, our self-organized traffic light
control must be extended by a stabilization strategy.

4.4. Stabilization strategy

We call a traffic light control ‘stable’ if the queue lengths will always stay finite [57].
Of course, stability requires that the traffic demand does not exceed the intersection
capacities. Nevertheless, the short-sightedness of locally optimizing strategies could lead
to an inefficient use of capacity, e.g. because of too frequent switching or too long
green time extensions. This problem can be illustrated even by analytical examples,
see [59, 88, 48]. For a discussion see section 3 and appendix A.1. As a consequence, even
when the traffic demand is far from being critical, there is a risk that vehicle queues grow
longer and longer and eventually block traffic flows at upstream intersections [26].

In order to stabilize a switched flow network, one may implement local supervisory
mechanisms [59]. The function of such mechanisms is to observe the current traffic
condition and to assign sufficiently long green times before queues become too long.
Maintaining stability is more of a resource allocation (green time assignment) rather than
a scheduling problem.

Our proposal is to complement the prioritization rule (16) by the following
stabilization rule: we define an ordered priority set Ω containing the arguments i of
all those traffic flows that have been selected by the supervisory mechanism and, thus,
need to be served soon in order to maintain stability. Furthermore, the argument i of a
crowded link i joins the set Ω as soon as more than some critical number ncrit

i of vehicles
is waiting to be served. It is removed from the set after the queue was cleared, i.e. ni = 0,
or after a maximum allowed green time gmax

i was reached. Elements included in the set
Ω are served on a first-come-first-served basis. As long as Ω is not empty, the control
strategy is to always serve the traffic flow corresponding to the first element (head) of Ω.
If Ω is empty, the traffic lights follow the prioritization rule (10).

4.5. Combined strategy

Our new control strategy can be summarized as follows:

σ =

{
head Ω if Ω �= ∅
arg maxi πi otherwise.

(17)

It is, therefore, a combination of two complementary control regimes. Whereas the
optimizing regime (while Ω = ∅) aims for minimizing waiting times by serving the
incoming traffic as quickly as possible, the stabilizing regime (while Ω �= ∅) intervenes
only if the optimizing regime fails to keep the queue lengths below a certain threshold
ncrit

i . This means that, as long as the optimizing regime itself exhibits the desired behavior,
i.e. as long as it is stable, the stabilizing regime will never intervene. If it needs to be
activated for particular traffic flows i with n̂i > ncrit

i , however, the control is handed back
to the optimizing regime as soon as the critical queues have been cleared.

Originally, such stabilizing supervisory mechanisms have been proposed for the control
of production and communication systems, e.g. in [59, 88], [93]–[95]. As such rules would,
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however, not explicitly pay attention to the duration of red traffic lights, they would not
be suited for the application to urban road networks: too long red times would increase
the risk of red-light violations and therefore also the risk of traffic accidents [96]–[98].
Thus, it is essential to have a good model for the service intervals.

4.5.1. Service intervals. In the following, we will specify the critical thresholds ncrit
i and

the maximum green times gmax
i such that the stabilization rule alone (σ = head Ω) fulfills

the following two safety requirements: each traffic flow shall be served

(S1) once, on average, within a desired service interval T > 0 and

(S2) at least once within a maximum service interval Tmax ≥ T .

These two parameters, T and Tmax, are the only two adjustable parameters of our control
algorithm.

As service interval zi, we define the time interval between two successive service
processes for the same traffic flow i. Accordingly, the service interval zi is the sum

zi = ri + τ 0
i + ĝi (18)

of the preceding red time of ri, the set-up time τ 0
i and the green time ĝi anticipated before

the start of the service process. Thus, we can anticipate the service interval zi before the
corresponding service process starts. This allows us to replace the critical threshold ncrit

i

by a function ncrit
i (zi) of the anticipated service interval zi.

Let us now study the statistical distribution of the service interval zi for a traffic flow
i with random arrivals. Under the assumption that ncrit

i (zi) is non-increasing and the
traffic flow is being served as soon as n̂i ≥ ncrit

i (zi), we can make the following general
statement: the probability P (Z ≤ zi) that the service interval Z is shorter than zi is equal
to the probability that more than ncrit

i (zi) vehicles arrive within a time interval zi. The
probability distribution P (Z ≤ zi) can be derived from a given function ncrit

i (zi) and a
given stochastic model of the arrival process, for example using the framework proposed
in [99, 100]. Figure 6 illustrates the distribution for two different threshold functions
ncrit

i (zi).
From the above observations, we can now derive an appropriate specification of

ncrit
i (zi). Most importantly, safety requirement (S1) can be fulfilled independently of

the particular arrival process. Following the above arguments, this mean that P (Z ≤
Tmax) = 1 can be enforced by requiring

ncrit
i (zi) ≤ 0 for z ≥ Tmax. (19)

Thus, no matter how few vehicles actually arrived, the corresponding traffic flow will be
served once within Tmax. One possible specification is

ncrit
i (zi) = Q̄iT

Tmax − zi

Tmax − T
, (20)

where Q̄i denotes the average arrival rate. This specification satisfies condition (19), but
also fulfills the safety requirement (S2). Within the desired service interval T , there will,
on average, arrive a number of Q̄iT vehicles. This number, however, is equal to the
critical threshold ncrit

i (zi) for an anticipated service interval of zi = T . Thus, a service
process is started immediately when there are as many vehicles to serve, as there arrive
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Figure 6. Top: anticipated number of vehicles n̂i to be served within a service
interval zi, following from the stochastic arrivals of the vehicles (fan of diagonal
lines). If the service process is started as soon as n̂i exceeds the threshold
function ncrit

i (zi) (thick line), the corresponding service interval is zi. ncrit
i (zi)

was specified as in equation (20) and plotted for Tmax → ∞ (left) and Tmax < ∞
(right). Bottom: probability distribution P (Z ≤ zi). Because the probability for
zi < T is 50%, and for zi < Tmax it is 100%, our controller fulfills both safety
requirements, (S1) and (S2).

on average within the desired service time period T . Figure 6 plots the distribution of
service intervals zi for different parameters of the threshold function ncrit

i (zi) according to
specification (20). Altogether, the probability of having zi < T is 50% and the probability
for zi < Tmax is 100%.

Let us briefly discuss two limiting cases: (i) if Tmax → ∞, the threshold function
ncrit

i (zi) = Q̄iT becomes a horizontal line as depicted in figure 6(a). This parameter
choice corresponds to a fully vehicle-responsive operation, where one does not care about
the duration of the actual service interval. (ii) If Tmax → T , the threshold function
becomes a vertical line at zi = T . This case, in contrast, corresponds to a pure fixed-time
operation with cycle time T , where the actual traffic situation is completely ignored. In
between these two limiting cases, i.e. for T < Tmax < ∞, the switching behavior is both
time-dependent and vehicle-responsive.

4.5.2. Sufficient stability condition. To make our control concept complete, the last step
is to specify the maximum allowed green time gmax

i for traffic flow i in the stabilization
strategy. Once gmax

i is exceeded, the element i is removed from Ω, even if its queue has not
been fully cleared in this time. Obviously, gmax

i must be chosen large enough in order to
maintain stability [59]. In particular, serving an average number of Q̄iT vehicles requires
us to provide a green time of at least TQ̄i/Q

max
i seconds. On the other hand, serving all

traffic flows one after the other for τ 0
i + gmax

i seconds each should not take more than T
seconds in total. Therefore, gmax

i must meet the constraints

gmax
i ≥ T Q̄i/Q

max
i for all i (21)

and ∑
i

(
τ 0
i + gmax

i

)
≤ T. (22)

doi:10.1088/1742-5468/2008/04/P04019 17

http://dx.doi.org/10.1088/1742-5468/2008/04/P04019


J.S
tat.M

ech.
(2008)

P
04019

Self-control of traffic lights and vehicle flows in urban road networks

In order to obtain a sufficient condition for the existence of stable solutions, one can insert
gmax

i from equation (21) into equation (22), which leads to

∑
i

τ 0
i ≤

(
1 −

∑
i

Q̄i/Q
max
i

)
T. (23)

That is, the sum of set-up times must be smaller than the fraction of the service period T
not needed to serve arriving vehicles. This condition is consistent with the condition
of Savkin [63, 101] for a general switched server queuing system to be controllable.
Condition (23) also indicates that there is a lower threshold for the desired service time
period T :

T ≥
∑

i τ
0
i

1 −
∑

i Q̄i/Qmax
i

. (24)

Interestingly, the same threshold has been shown to be the shortest possible cycle for a
stable periodic switching sequence [73, 50, 102, 39]. Therefore, we can conclude that our
self-organized, non-periodic traffic control defined by equation (17) is stable whenever
there exists a stable fixed-time control with cycle time T .

For a given desired service time period T satisfying the stability condition (24),
the corresponding gmax

i values can be obtained by solving an optimization problem.
To minimize the average waiting times over an interval T , one maximizes the overall
throughput

∑
i Q

max
i gmax

i as proposed in [103, 104, 55]. In order to solve this optimization
problem, however, it is necessary to know how much green time must be reserved for
all other traffic flows [35]. The determination of the exact optimum would require us to
predict future arrivals over a prognosis horizon of about T (i.e. normally much longer
than one minute). Because this is usually not possible (see appendix A.3), we suggest to
determine a nearly optimal solution instead. Setting

gmax
i =

Q̄i

Qmax
i

T +
Qmax

i∑
i′ Q

max
i′

T res (25)

(see the circle in figure 7) satisfies both constraints (21) and (22). The first term on the
right-hand side of equation (25) represents the minimum required green time TQ̄i/Q

max
i

according to equation (21). The second term adds a fraction of the ‘residual time’ T res

proportional to the corresponding saturation flow Qmax
i . Herein, the residual time is

defined as

T res = T

(
1 −

∑
i

Q̄i/Q
max
i

)
−

∑
i

τ 0
i , (26)

i.e. as the part of the service interval T that is not necessarily needed for service processes.
(In other words, stability would still be guaranteed even if the traffic lights would not serve
any traffic flow for T res seconds within the service interval T . Thus, T res relates to the
free intersection capacity, which is here being used to provide maximum possible green
times if they are needed by the stabilization strategy.)
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Figure 7. Stable solutions for the maximum green times gmax
i lie within the

simplex (shaded area) constrained by equations (21) and (22). The optimal
values for gmax

i can be obtained from maximizing the throughput
∑

i g
max
i Qmax

i .
An easily computable explicit solution (circle) is given by equation (25).

4.5.3. Conclusion. Our decentralized traffic light control strategy given by equation (17)
should stabilize traffic flows in a road network as long as the traffic demands Q̄i and the
desired service interval T satisfy the sufficient stability condition (24). Interestingly, this
condition is satisfied whenever there exists a stable fixed-time control with cycle time T .
Furthermore, both safety requirements (S1) and (S2) are fulfilled under all circumstances,
i.e. even for over-saturated traffic conditions, where the eventual growth of vehicle queues
is unavoidable. In this case, the stabilization strategy serves the ingoing traffic flows one
after the other for τ 0

i + gmax
i seconds each. After the traffic situation has relaxed, i.e. as

soon as all queues can be cleared again within the desired service interval T , the control is
handed over to the optimization strategy. This uses the available free intersection capacity
T res according to equation (26) for flexible switching sequences or green time extensions,
i.e. for more frequent set-ups or idling periods, as long as it helps to save waiting times.
Such a scenario is illustrated in figure 8: at an initially over-saturated intersection, the
stabilization strategy manages to reduce the queue lengths, before it hands over to the
optimization strategy, which lets the queue lengths exponentially converge to the optimum
cycle associated with minimum waiting times.

5. Simulation of the self-organized traffic light control

We have simulated the above control strategy (17) with the macroscopic network flow
model sketched in section 2, using our short-term flow anticipation algorithm (see
section 3). For comparison, we have also implemented our new control strategy in the
commercial simulation tool VISSIM [105], which uses a microscopic car-following model
and represents the dynamics of vehicles in more detail. This has resulted in qualitatively
the same and quantitatively very similar results, so that we do not show these duplicating
results here.

For simplicity, our computer simulations assume that all traffic flows at the
intersections are incompatible, i.e. only one traffic flow can be served at a time. In the
following, we will report the corresponding simulation results and analyze the performance
of our control strategy.
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Figure 8. Mutual, time-dependent interdependence of the expected number of
vehicles (n̂1, n̂2) at an intersection with two identical traffic flows. The initial
state (crossed circle) corresponds to an over-saturated traffic condition. To clear
the queues as fast as possible, the stabilization strategy (red) minimizes switching
losses by serving each traffic flow exactly once within the desired service interval
T . As soon as the trajectories are below the critical threshold ncrit

i = Q̄iT
defined by equation (20) in the limit Tmax → ∞, the optimization strategy is
being activated (green lines). The optimization strategy uses the available free
intersection capacity to converge towards the fastest possible switching sequence,
which is the optimum traffic light cycle in terms of travel time minimization.

5.1. Operation modes at an isolated intersection

As a first test scenario, we study an isolated intersection with four traffic flows as depicted
in figure 9. We are interested in the average total queue length n̄ = 〈

∑
i ni〉 in the steady

state, i.e. over one simulation hour. Whereas the inflow on the side streets was set to a
constant volume of QB = QD = 180 vehicles per hour, the inflow QA = QC on the two-lane
main streets was varied. With a saturation flow rate of 1800 vehicles per hour and lane,
we had Qmax

A = Qmax
C = 3600 vehicles per hour and Qmax

B = Qmax
D = 1800 vehicles per

hour. Furthermore, the set-up times to switch between traffic flows were τ 0
i = 5 s. With

the control parameters T = 120 s and Tmax = 180 s for the desired and the maximum
service intervals, respectively, the sufficient stability condition equation (24) was satisfied,
if the utilization

u =
∑

i

Qi/Q
max
i (27)

was less than 0.83. This means that our traffic light control was stable as long as the
average inflow on the main streets QA = QC was less than 1140 vehicles per hour.

For different levels of saturation, our self-organized traffic light control exhibits several
distinct operation regimes:

5.1.1. Serving single vehicles at low utilizations. In the low-utilization regime, traffic
demand is considerably below capacity. A minimization of the average waiting times
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Figure 9. Isolated intersection with four competing traffic flows.

Figure 10. Illustration of vehicle trajectories for different operation modes: (a) in
the low-utilization regime, the vehicles are served by a green light just upon their
arrival at the stop-line (horizontal bar). Thereby, a stopping of the vehicles
can be avoided. (b) At higher utilizations, the formation of vehicle platoons is
unavoidable. However, serving vehicle platoons rather than maintaining the first-
come-first-served principle allows one to minimize the average waiting time, as
switching losses are reduced.

is achieved by serving the vehicles just upon their arrival, i.e. according to a first-come-
first-served principle. This operation mode, which also minimizes individual travel times,
is illustrated in figure 10(a).

5.1.2. Service of platoons at moderate utilizations. As the traffic demand increases, several
vehicles may arrive at the intersection at about the same time, i.e. they may mutually
obstruct each other. Some vehicles will have to wait, which implies the formation of
platoons. However, given a certain utilization level, serving platoons becomes more
efficient than applying the first-come-first-served principle (see figure 10(b)): the reduction
of switching losses by serving platoons rather than single vehicles does not only reach a
higher intersection capacity, but also a minimization of the average travel times.

5.1.3. Suppression of minor flows at medium utilizations. In figure 11, for utilizations u
between about 0.3 and 0.5 one can see that the (multi-lane) main streets are served more
frequently than the (one-lane) side streets. That means the interruption of the main flows
by minor flows is suppressed, which is again in favor of minimizing the average waiting
times.

5.1.4. Flow stabilization at high utilizations. For even higher utilizations u, our self-
organized traffic light control does not exclusively follow the travel time optimization
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Figure 11. Flexible switching sequences for different utilization levels u over a
complete service interval of traffic flow B. The results were obtained by computer
simulation of the traffic flows at a single intersection after a transient time period.
For details see section 5.2.

strategy any longer: the side streets would be served too rarely or too briefly. This becomes
clear in figure 11 for utilizations u above 0.55. An efficient usage of the intersection
capacity is now reached by serving the side streets as soon as their vehicle queues have
reached a critical size. Thereby, the stabilization mechanism (see section 4.4) ensures
that the safety-critical service interval of T = 120 s is never exceeded. Interestingly, there
have emerged switching sequences of higher periods, that is, it may require several service
intervals T before a switching sequence repeats. Nevertheless, all remaining capacity is
still used to serve the main streets in the most flexible way, i.e. by serving them as often
as possible.

5.2. Performance at an isolated intersection

Let us now compare our self-organizing control strategy with a simple fixed-time cycle-
based strategy, the cycle time of which was set to a constant value of 120 s. While the
switching order was set to A–B–C–D, the green times were adapted according to the
formula

g0
i =

ui∑
i′ ui′

(
T −

∑
i′

τ 0
i′

)
. (28)

That is, the green time g0
i of each flow i was specified proportionally to the corresponding

partial utilization ui = Qi/Q
max
i .

5.2.1. Constant inflows. Figure 12 shows the average total queue lengths n̄ for the case
of regular inflows, i.e. for identical time gaps between the arriving vehicles. Interestingly,
the optimization strategy performs better than the cycle-based approach as long as the
traffic demand is low. But it fails at high utilizations u > 0.6, which is due to the strong
prioritization of the main streets, where a higher throughput can be reached over a short
optimization horizon. In the course of time, the side streets are, therefore, served too
seldom or too briefly.

The stabilization strategy of section 4.4, in contrast, is stable at all utilization levels u,
but it is associated with longer queues and, thus, longer average waiting times. However,
the combined strategy of section 4.5 starts serving the side streets already before their
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Figure 12. Average total queue length n̄ =
∑

i n̄i at an intersection as depicted
in figure 9. The optimization strategy becomes unstable already at medium
utilizations levels u > 0.6 and the stabilization strategy performs always worse
than the cycle-based control. By suitably combining both inferior strategies,
however, our self-organized traffic light control performs significantly better at
all utilization levels. This also means that the traffic flow network will enter the
over-saturated flow regime later, if at all. Therefore, traffic breakdowns during
rush hours can be avoided or at least delayed, and the recovery from congestion
will proceed faster.

Figure 13. Box–whisker plot for the queue lengths at an isolated intersection
(see figure 9) now with stochastic inflows. For the cycle-based control, the queue
lengths are significantly higher compared to the case with regular inflow (see
figure 12). In contrast, our self-organized control strategy manages to adjust to
the stochastic variations in a flexible way, which leads to a reduction in both the
mean value and the variance of the queue lengths.

queues grow too long. For this reason, the corresponding self-organized control strategy
reaches a significant reduction of queue lengths and waiting times at all utilization levels.

5.2.2. Variable inflows. In the following simulation we assume that the vehicles arrive in
platoons, where both the size of the platoons as well as the time gap between them are
Poisson-distributed. Figure 13 shows the box–whisker plot (0–25–50–75–100 percentiles)
of the stationary queue length distribution over 25 independent simulation runs each.

Because the cycle-based control strategy cannot respond to irregular inflow patterns,
the green times are sometimes too short and sometimes too long, resulting in greater

doi:10.1088/1742-5468/2008/04/P04019 23

http://dx.doi.org/10.1088/1742-5468/2008/04/P04019


J.S
tat.M

ech.
(2008)

P
04019

Self-control of traffic lights and vehicle flows in urban road networks

Figure 14. Time-dependent queue lengths for the non-acyclic road network of
figure 1(b) analyzed in figure 2, but now assuming our self-organized traffic light
control. We find stable queue lengths ni(t) for the same parameters and boundary
conditions that caused a dynamic instability when a clearing policy was applied
(see figure 2). The inflows were QA = QB = 1100 vehicles per hour, the saturation
flow rates were 1800 vehicles per hour and lane, and the set-up times (vertical
bars) were τ0

i = 5 s. Our self-organized traffic light control stabilizes the network
and serves each traffic flow once within the desired service interval T = 120.

delays at all utilization levels. In contrast, the self-organizing traffic light control has a
large degree of flexibility to adjust to randomly arriving platoons. At low utilizations
u < 0.5, where it is possible to serve the platoons just as they arrive, there are almost no
delays. But even at higher utilizations u ≤ 0.7, the queue lengths are significantly smaller
compared to the case with regular inflows (see figure 13). Hence, our self-optimizing traffic
lights could adjust well to the fluctuations in the inflow: the irregularly arriving platoons
were served by irregular switching sequences. Altogether, this resulted in a reduction of
the variability of the queue lengths and the related waiting times.

5.3. Coordination in networks

5.3.1. Solving the Kumar–Seidman problem. In appendix A.1, we demonstrate how a
clearing policy, e.g. the Clear-Largest-Buffer-Strategy, can behave unstably in non-acyclic
networks. The same network, illustrated in figure 1(b), shall now be operated with our self-
organized traffic light control. Figure 14 shows the periodic behavior of the queue lengths
in the steady state. Our self-control succeeds to stabilize the network, in particular because
the stabilization strategy terminates serving streets 2 and 4 as soon as the anticipated
number of vehicles on streets 3 or 1, respectively, has exceeded the critical threshold
ncrit

i (zi) given by equation (20). Inefficiencies due to overly long green time extensions,
which were responsible for the instability when using clearing policies, are thereby avoided.

5.3.2. Irregular networks. Let us now consider a 9 × 9 lattice road network, where both
the length and the number of lanes of the road sections are irregular. The network layout
is depicted in figure 15(a). The saturation flow is 1800 vehicles per hour and lane, and
the speed limit is 50 km h−1 on all streets. Traffic enters and leaves the network at its
boundary links and distributes according to a constant turning fraction of αij = 10%
turning left and right, while αij = 80% go straight ahead at each intersection. The arrival
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Figure 15. (a) Road network with irregular road lengths and different numbers
of lanes. (b) Average queue lengths for different inflow rates. In contrast to the
cycle-based strategy, our approach reaches a substantial reduction in the average
queue length and related travel times. (c) The frequency density distribution
f(zi) exhibits prominent peaks at different service intervals zi. This indicates a
self-organized coordination with a tendency of cycle times that are multiples of
≈18 s. Interestingly enough, a cycle of 18 s duration does not occur itself.

rate at each entry point is proportional to the corresponding number of lanes. For the
operation of the traffic lights we assume a set-up time of τ 0

i = 5 s, a desired service
interval of T = 90 s and a maximum service interval of Tmax = 150 s. For the fixed-
time control strategy, with which we compare our results, we chose a cycle time of 90 s,
demand-adaptive green times as specified by equation (28) and random offsets between
the intersections.
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Figure 15(b) plots the total average queue length
∑

i n̄i in the stationary state
(over one simulation hour) against the total traffic volume entering the network. Above
a maximum inflow of 18 700 vehicles per hour, where the first intersections are over-
saturated, neither strategy can prevent the queues from growing. Up to this value,
however, our self-organized control strategy exhibits significantly smaller queue lengths in
contrast to the cycle-based strategy. This is particularly due to the fact that our strategy
has the flexibility to switch more often at less saturated intersections. However, the traffic
lights are still coordinated and the gain in performance is significant. It is even higher
than in the case of a single intersection.

The implicit coordination of the traffic lights becomes clear in figure 15(c), which has
been determined for a total inflow of 10 000 vehicles per hour. It shows the frequency
density distribution f(zi) of the service intervals zi over all traffic lights in the network
exhibits prominent peaks at fractions of a basic frequency. This regularity indicates that
a distinct periodicity in the switching sequence has emerged. Even though many traffic
flows are served exactly once within T , the period of the actual switching sequences is
much smaller. This is because some traffic flows are served several times within the time
period T . Therefore, it may take several intervals T before a switching sequence repeats
(see also figure 11). Nevertheless, the service interval does not exceed the maximum
service interval Tmax.

6. Conclusions and outlook

In this paper, we have proposed a self-organized traffic light control based on decentralized,
local interactions. A visualization of its functional principles and properties is provided
on the webpage http://traffic.stefanlaemmer.de, which includes many video animations
of traffic simulations. The corresponding self-control concept is based on equation (17),
together with the specifications in equations (16), (20) and (25). It differs from previous
signal control approaches in the following points:

(i) It reaches a superior performance by a non-periodic service, which is more flexible. A
periodic traffic light control may, nevertheless, emerge, if the street network is grid-
like and the incoming flows and turning fractions (or the boundary conditions) are
periodic.

(ii) The variation of waiting times is surprisingly small, i.e. the average waiting times are
well predictable, even though the sequence and duration of green times are basically
unpredictable.

(iii) Our simulation results suggest that a substantial reduction of the average travel times,
and therefore also of the fuel consumption and CO2 emission, could be reached [35].

(iv) The greatest gain in performance compared to previous traffic control approaches
is expected (a) for strongly varying inflows, (b) irregular road networks, (c) large
variations of the flows in different directions and among neighboring traffic lights, or
(d) at night, where single vehicles should be served upon their arrival at the traffic
light.

The success principle behind the superior performance of our decentralized self-control
concept is the combination of two inferior strategies, a stabilization and an optimizing rule,
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Figure 16. Illustration of the subdivision of a road network into non-overlapping
subnetworks (‘core areas’) and definition of peripheral boundary areas as
proposed in [106].

which allows for a varying sequence of traffic phases and a spatially coordinated, non-
cyclical operation. The new approach can be easily integrated into a given traffic control
environment (i.e. it is compatible with pre-specified controls at certain intersections). The
decentralized sensor, communication and control concept is potentially less costly than
centralized control concepts, and it can be set up in a way ensuring that traffic lights are
still operational when measurement sensors or communication fail. Extensions to multi-
phase operation and prioritization of public traffic will be presented in a forthcoming
paper. Similar decentralized self-control strategies could be applied to the coordination of
logistic or production processes and even to the coordination of work-flows in companies
and administrations. (In fact, it might be easier to implement them in one of these
systems, as traffic legislation and/or operation would first have to be adjusted to allow
for the more efficient, non-cyclical traffic light operation.)

The proposed self-organized traffic light control is the first concrete realization of
the approach suggested in a previous patent [106]. There, the road network has been
completely subdivided into non-overlapping subnetworks (‘core areas’). Moreover, each
of the subnetworks was extended by additional neighboring nodes that define a boundary
area (‘periphery’). The boundary areas overlap with parts of the neighboring core areas
and serve the coordination between the traffic light controls of the subnetworks (see
figure 16). In each core area, one first determines highly performing solutions, assuming
given traffic flows in the boundary areas. A traffic light control for the full network is then
defined by a combination of highly performing traffic light controls for the subnetworks.
The combination which performs best in the full network is finally applied (where the
best solution for the full network is not necessarily the combination of the best solutions
for the subnetworks).

The realization proposed in this paper assumes the smallest possible specification of
the subnetworks, namely the single nodes and the corresponding set of ingoing links. The
neighboring nodes constitute the respective boundary area of a node. The boundary areas
are involved in the short-term anticipation of traffic flows in the associated subnetworks.
To determine highly performing traffic light controls in the subnetworks, we apply
optimization and stabilization strategies (see sections 4.3 and 4.4). The traffic light control
in the full network is then implemented as follows: the stabilization strategy is applied at
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nodes i where the set Ωi is non-empty, while the optimization strategy is applied at the
other nodes. This traffic light control performs better in the full network than applying
the optimization strategy at all nodes, although the latter would minimize the travel times
locally. The higher performance results from avoiding spill-back effects (see section 4.5),
which would eventually block other intersections.
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Appendix. General problems of network flow coordination

A.1. Dynamic instabilities

In game theory, it is known that the interaction of selfish agents can lead to inefficiencies,
such as social dilemmas [107]. Therefore, a decentralized flow optimization by each single
intersection is not necessarily optimal for the network. In fact, it is not a successful
strategy to design a control algorithm for a single intersection and to operate the network
based on such local intersection controls. Even if the control at each intersection minimizes
the local increase of travel time, the dynamic coupling of neighboring intersections in the
network can lead to inefficiencies due to correlations in the flow dynamics (see figure 2).
The problem is either the loss of service times by frequent switches of traffic lights or the
lack of coordination between them, which may increase the average waiting times. In other
words, the intersections may not be able to handle the same amount of traffic as they could
in isolation, assuming that the arrival of vehicles is continuous. Inefficiencies reduce the
intersection capacities and cause the queues to grow longer and longer. The related spill-
back effect sooner or later blocks the flow at upstream intersections. This phenomenon,
which is referred to as dynamic instability [59], was, for example, demonstrated to occur
under the following two conditions:

(i) if the road network is non-acyclic and

(ii) if the traffic control pursues a clearing policy.

In the following, both mechanisms shall be explained in more detail.
Regarding (i). A flow network is acyclic, if one could rank the nodes in such a way

that all flows pass the nodes from lower to higher rank. Road networks, however, can
never be acyclic. This is simply due to the fact that there always exist paths leading
from one intersection to any other and back (not necessarily along the same route). This
makes such a ranking impossible. The critical aspect of non-acyclic networks is that
information propagates in so-called feedback loops. It means that, if one intersection
sends a platoon of vehicles to one of its neighbors, it influences the time point at which
another platoon is sent back. Thus, the arrivals at an intersection are not independent of
its past switching sequence. Because these couplings do not only exist between neighboring
intersections, but between all intersections in the network, and because these couplings
have dynamically varying travel-time-related time delays, these feedback are far too
complex to be anticipated locally.
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Regarding (ii). Clearing policies continue serving a street until its queue has been fully
cleared [57]. They only differ in the rules selecting what street to serve next. Such policies
were shown in many experiments to be optimal at isolated intersections [81, 56, 108], but
also to cause dynamic instabilities in non-acyclic networks [59, 58]. This is, for example,
the case in the road network depicted in figure 1(b). Even though each intersection
alone would have been controlled optimally, as soon as they are placed next to each
other in a network, they turn out to behave unstably (see figure 2). These facts
indicate the importance to test decentralized traffic light controls in non-acyclic networks.
Unfortunately, many recently proposed approaches have been tested either at isolated
intersections or in networks with unidirectional streets only. This may explain why most
decentralized control concepts have not been practically implemented.

Our arguments above, however, do not imply that a road network can never be
successfully controlled in a decentralized way, i.e. with independent control algorithms
at each intersection. As shown in this paper, such a strategy is in fact possible, but
it requires using a novel control mechanism. In section 4, we have proposed such a
mechanism, designed a self-organizing traffic light control and extended it to fulfill critical
safety requirements, i.e. to comply with maximum red times.

A.2. Chaotic dynamics

Switched flow networks are known to exhibit chaotic behavior under certain
conditions [109, 65]. In principle, this is also expected to apply to traffic light controlled
road networks. As a generic feature, chaotic behavior of a dynamical system is
characterized by an exponential divergence of initially close trajectories. This sensitivity
against small perturbations, which is a result of the intrinsic nonlinearity of the system,
is often named the ‘butterfly effect’ [110]. It may occur even without any stochasticity in
the system behavior.

Chase et al [47, 111] illustrated that chaotic behavior emerges even in very simple
switched flow systems. For example, in the case of a single server responsible for serving
three or more different flow directions, the resulting dynamics may be chaotic if the server
is filling one buffer up to a certain level and then switches to another buffer (switched
arrival system) [112]. But also the opposite case, where the server starts clearing a buffer
as soon as its fill level exceeds a critical threshold, exhibits chaotic behavior (switched
server system with limited buffers) [113, 114]. The latter case directly corresponds to a
traffic light controlled intersection with restricted queue lengths at the incoming links. The
generic mechanism leading to this behavior can be understood by studying the manifold
(hyperplane), in which the trajectories of the related queue lengths (reflecting buffer fill
levels) evolve. Because the underlying switching rules impose certain boundaries on this
hyperplane, the trajectories experience a so-called ‘strange reflection’ if they hit one of
these boundaries. This observation allows us to describe such systems in terms of ‘pseudo
billiard dynamics’ [115, 116].

Studying the temporal evolution of vehicle positions, chaos can be observed even if
the switching sequence of the traffic lights is given. This was shown by Toledo et al [117]
and Nagatani [118] for a single vehicle moving through a sequence of fixed-time controlled
traffic lights. This observation is independent of whether the distances between the traffic
lights are regular or not [119]. In order to observe chaos, moreover, one does not even
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require traffic lights at all. Wastavino et al [24] illustrated this for the case where vehicles
are obstructed by yield signs.

The above examples suggest that chaotic behavior is intrinsic to vehicular flow in
traffic networks. Whereas traffic flow is statistically well predictable at an aggregate
level, it becomes highly unpredictable as soon as we want to describe its dynamics.
Predictability, however, is of great importance for the design of a traffic light control that
should be able to coordinate traffic flows, in particular to respond to large platoons as
well as single vehicles. The purpose of our proposed anticipation strategy (see section 3),
therefore, is not to statistically average over the complex nonlinear dynamics, but to cope
with it on a short timescale in the most flexible way.

A.3. Limited prognosis time horizon

The unpredictable nature of traffic flow makes it particularly difficult to anticipate traffic
conditions over long time horizons. Even if we assume the streets to be equipped with
detectors and the intersections to communicate with each other, the prognosis time horizon
can hardly be larger than twice the travel time Li/Vi along the connecting links, e.g. 30–
40 s for a typical road section with Li ≈ 300 m and Vi ≈ 50 km h−1. Whereas the
model presented in section 2 can predict well over time horizons of less than the travel
time Li/Vi, larger horizons obviously need to take the switching sequence of neighboring
intersections into account. If the control decision of an intersection depends on a time
horizon of more than twice the travel time, this implies that the outcome of the control
decision must be already known to its neighbor. Such kinds of information loops are yet
another complication by the non-acyclic nature of road networks.

These considerations show that the problem of limited prognosis horizons is common
to all flexible, vehicle-responsive traffic light controls, no matter whether they are
implemented in a centralized or decentralized way. Thus, the fact that long-range
interactions are highly complex and almost impossible to predict, holds for any control as
long as it is flexibly responding to changing traffic conditions and not just imposing a pre-
defined pattern on the traffic flows, such as conventional, cycle-based controls do. Another
consequence of the limited prognosis time horizon is that any optimization is inevitably
short-sighted and, therefore, must be regarded as a potential source of inefficiency and
instability. This problem can be overcome, however, by introducing an appropriate
stabilization strategy as presented in section 4.4.
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